

Balancing Area Guidelines and Network Supply Point Implementation Details

Version 2.2

5 March 2015

Version control

Version	Date amended	Comments
1.0	10 October 2007	Creation of guidelines
2.0	17 March 2008	Inclusion of naming procedure for balancing areas and Appendix 1 updated to reflect the naming procedure. The authority to approve minor amendments has been delegated to the General Manager by the Commission Board at the 1/2 April 2008 meeting.
2.1	1 November 2010	Updated for transition to Electricity Authority and amendments to part J of the rules.
2.2	5 March 2015	Update to contact details and style

Glossary of abbreviations and terms

Authority Electricity Authority

Code Electricity Industry Participation Code 2010

GXP Grid Exit Point

HHR Half Hour

ICP Installation Control Point

NHH Non Half Hour

NSP Network Supply Point

647379 A

Contents

Glossary of ak	breviations and terms	Α
Objective		1
Balancing area	a guidelines	3
NSP implemer	ntation information	6
Sources of inf	ormation	8
Appendix A	Example of four balancing areas: AJTOWN1BEETG,	a

647379 C

Objective

These guidelines have been prepared by the Electricity Authority (Authority) to assist participants and others in interpreting and determining how participants might comply with Part 15 of the Electricity Industry Participation Code 2010 (Code). These guidelines relate to the supply of information to the **reconciliation manager** under Part 15 of the Code.

Bolded words within the text of these guidelines refer to words and phrases that are defined in Part 1 of the Code.

The purpose of this Guideline is to provide **network** owners with the criteria to use when deciding how to group **network supply points** (**NSP**) into balancing areas, as required by Part 15 of the Code. These guidelines should be read in conjunction with Part 15.

In particular, these guidelines set out information about the establishment and inclusion of **NSPs** in the **NSP** mapping table, and the relationship between **NSPs**, the **loss category** table, and **NSP submission information**.

In appendix A, an example is provided showing four **balancing areas** and how the **NSP** mapping table would look.

Disclaimer

These guidelines are provided as general information only, and not as legal advice. They are not legally binding. If there is any inconsistency between the content of these guidelines and the Code, the Code takes precedence.

647379-4 1 of 11

Balancing area guidelines

Background

1. Under normal conditions, ICPs are supplied electricity via one designated NSP. However, in the event of an outage, a network owner can reconfigure points of connections within its network so that supply is provided from another NSP. Since retailers are unable to track these changes accurately in their submissions, they will provide submission information for the wrong NSP. The reconciliation process uses the concept of balancing areas to group NSPs together and to re-allocate consumption from over-allocated NSPs to under-allocated NSPs within each balancing area.

Decision criteria

- 2. For reconciliation purposes, every **NSP** is assigned to one **balancing area**. Only **NSPs** with the same **network** owner can be grouped within a single **balancing area**.
- 3. To decide which **NSPs** should be grouped together to form a **balancing area**, each **NSP** should be considered and evaluated as follows:
 - (a) A gateway **NSP** that permanently connects a **local network** with an **embedded network** or permanently connects an **embedded network** with another **embedded network** should be assigned its own unique **balancing area**. This **balancing area** is for the purpose of reconciling the (child) **embedded network**.
 - (b) An **NSP** supplying a **direct consumer** is assigned its own unique **balancing area**. If the **direct consumer** at a single location is supplied by more than one **NSP** then these **NSPs** can be grouped under the same **balancing area**.
 - (c) An **NSP** that is **grid**-connected and into which a **generator** is supplying **electricity** should be assigned its own unique **balancing area**. If the **generator** injects into more than one **NSP** from a generating plant then these **NSPs** can be grouped under the same **balancing area**.
 - (d) An NSP that is grid-connected and that under normal conditions supplies one or more ICP with electricity should be assigned to the same balancing area as any NSP that can provide an alternative supply of electricity to at least one of those ICPs. This alternative supply can be either temporary or permanent. However:
 - (i) if this connection is from a network that has a different network owner then the NSP should not be assigned to the same balancing area. In this case, an interconnection NSP should be established with a metering installation to measure the flow of electricity between the two balancing areas
 - (ii) if this connection is from an **embedded network** which is only temporarily connected to the **local network**, then an interconnection **NSP** should be

647379-4 3 of 11

established with a **metering installation** to measure the flow of **electricity** between the two **balancing areas**.

Examples of balancing areas

- 4. In practical terms, a **balancing area** would consist of:
 - (a) a local network owned by one network owner;
 - (b) a single embedded network;
 - (c) the NSPs connecting a direct consumer at one location to the grid; or
 - (d) the **NSPs** connecting a **generating plant** to the **grid** (for one **generator**).

Business rules applying to balancing areas, local networks, and embedded networks

- 5. **NSPs** that can be electrically interconnected should belong to the same **balancing** area.
- 6. Each **local network NSP** and each **embedded network** should belong to one, and only one, **balancing area**.
- 7. A **local network** can have one or more **NSPs** that connect it to the grid and may consequently comprise one or more **balancing areas**.
- 8. Each **embedded network** is a **balancing area** in its own right and should not be included in the **balancing area** of its parent **network**.
- 9. An **embedded network** permanently connected to a **local network** should have a single gateway **NSP** defined for that connection.
- 10. An **embedded network** may be permanently connected to another **embedded network** via a single gateway **NSP**.
- 11. An **embedded network** with only a temporary connection to a **local network** or to another **embedded network** should have an interconnection **NSP** established for that connection.
- 12. A local network may have more than one embedded network connected to it.
- 13. Where a **direct consumer** extracts **electricity** from one or more **NSPs** at a single location, these **NSPs** should all be grouped into one **balancing area**.
- 14. Where a **grid**-connected **generator** injects **electricity** into one or more **NSPs** from a **generating plant**, these **NSPs** should all be grouped into one **balancing area**.
- 15. An **NSP** or a gateway **NSP** can only belong to one **balancing area**.
- 16. An interconnection-point **NSP** should have two **NSP** identifiers, one for each **balancing** area that it connects.

Balancing area notification to the reconciliation manager

17. Network owners should ensure that each balancing area definition contained within the NSP mapping table includes details of all possible temporary points of connections (NSPs) as well as permanent points of connections (NSPs). The reconciliation manager must be notified when an NSP is created, decommissioned, or transferred, whether permanently or temporarily, in accordance with clause 11.8 of the Code.

Naming procedure of balancing areas

- 18. The naming procedure for **balancing areas** should be as follows:
 - a. The 12 character code will be "aaaaaaaNNNNX", where:

aaaaaaa is a seven character unique identifier (can be upper or

lower case)

NNNN is the network four letter identifier assigned by the market

administrator to the network owner (should be upper

case).

X is the network type (G for grid connected or E for

embedded) (should be upper case).

647379-4 5 of 11

NSP implementation information

Interconnection NSPs

- 19. Interconnection **NSPs** are metered connection points between two **networks** (local or embedded) that are in different **balancing areas**.
- 20. ICPs cannot be assigned to interconnection NSPs and hence there should be no purchaser submissions at these points of connection. There will be only NSP volume information submissions.
- 21. Interconnection points require two entries in the NSP mapping table, one for each network owner. For example, at interconnection point BCD0331 there will be two NSPs defined, one for each network owner. One for the first network (BCD0331 NET1) and another for the second network owner (BCD0331 NET2).
- 22. When an interconnection point is established, there should also be a parent **NSP** designated for it in the same **balancing area**. The parent **NSP** should be either a **grid-connected NSP** of the **balancing area**, or, if the **balancing area** is an **embedded network** then it should be the gateway **NSP**. The purpose of the 'parent **NSP**' is to allocate of **submission information**, when load is re-allocated during the balancing process within the reconciliation process.
- 23. The **network** owner who initiates the interconnection is responsible for the quantification of **volume information** and its submission to the **reconciliation manager**, from their own **network** point of view. The **reconciliation manager** will generate the 'opposite' **NSP volume information** submission for the other **network** owner on the other side of the interconnection point.
- 24. All **NSP volume information** submissions for interconnection **NSPs** must have a reconciliation type of "NP".
- 25. Loss factors for interconnection NSPs are applicable from the designated parent NSP. A loss category code and the loss factor for the loss category code must be established and added to the table of loss category codes on the registry for the applicable network (of the interconnected NSP).
- 26. The **loss category** code will be recorded in the submission file for that interconnected **NSP**, in accordance with the Code.

Gateway NSPs

- 27. A gateway **NSP** is a permanent metered **point of connection** between an **embedded network** and a **local network** or another **embedded network**.
- 28. **ICPs** within an **embedded network** will be referenced to the gateway **NSP** in the **registry**. Likewise their **submission information** (consumption and embedded generation) will be provided at the gateway **NSP**.

- 29. When a gateway NSP is established, there should also be a parent NSP designated for it in the network to which it is connected. The parent NSP should be either a grid-connected NSP or another gateway NSP, if the network to which it is connected is embedded.
- 30. Loss factors for gateway NSPs are applicable to the designated parent NSP. The loss factor code will be recorded in the 'distributor ICP' that represents the gateway NSP in the registry and that is maintained by the parent network owner. The associated entry in the loss category table is also maintained by the parent network owner.
- 31. It should be possible to trace back to a **grid**-connected **NSP** from each **embedded network** in the **NSP** mapping table.

Grid-connected NSPs

- 32. **Local networks**, **direct consumers**, and **grid**-connected **generators** have metered **points of connection** to the **grid**.
- 33. Direct consumers and grid-connected generators will not have ICPs in the registry and hence there will be neither non half hour (NHH) nor half hour (HHR) submission information provided to the reconciliation manager. There will however be NSP volume information submitted.
- 34. **Direct consumers** will have their **NSP volume information** submitted by the **grid owner**. In the **NSP volume information** submission, the **participant** code (in the role of **network** owner) will be that of the **participant** code of the **consumer** and the **participant** code of the submitter will be "TPNZ".
- 35. **Grid**-connected **generators** will submit their **NSP volume information** to the **reconciliation manager**. In the **NSP volume information** submission, the **participant** code (in the role of **network** owner) will be that of the submitting **generator** and the **participant** code of the submitter will be the same **participant** code. For example, if the **generator** is Meridian Energy, the **participant identifier** will be MERI in both cases.
- 36. Local networks will have their NSP volume information submitted by the grid owner. The submission's network code of the NSP will be the participant code of the local network. For example, if the network owner is Powerco, the network participant identifier will be POCO, but the participant code of the submitter will be TPNZ.
- 37. The **loss category** code of GRID will be used in these **NSPs volume information** submissions. There will be an entry pre-loaded in the **reconciliation manager's** system for the **loss category** code GRID, with a **loss factor** of 1. The reconciliation system will use this entry for **loss category** codes of GRID.

647379-4 7 of 11

Sources of information

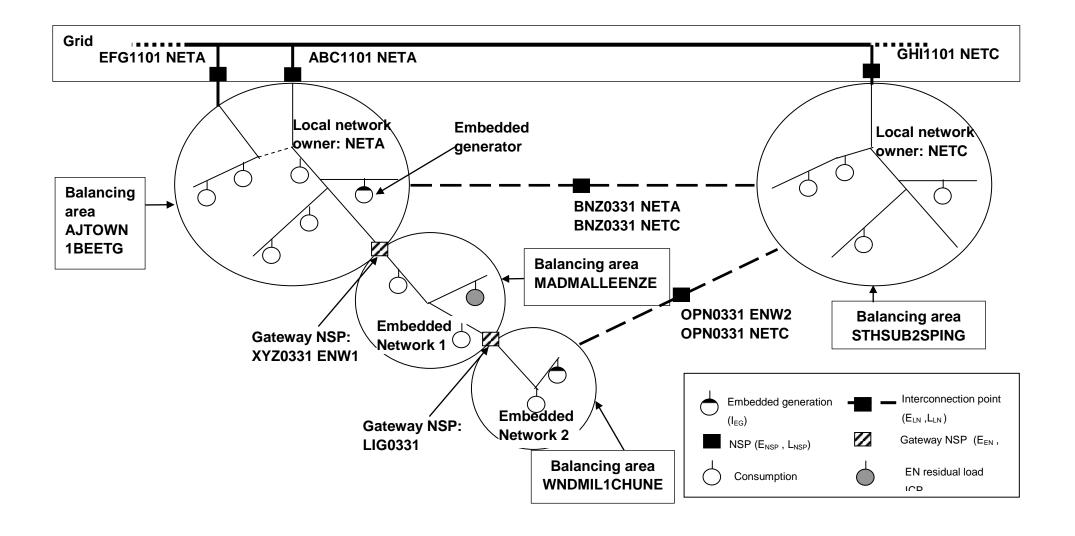
38. The Code can be found on the Authority's website at:

http://www.ea.govt.nz/code-and-compliance/the-code/

39. If you require further assistance, please contact the Market Operations Team:

Electricity Authority PO Box 10041 Wellington

Attention: Market Operations Team


Telephone: 04 460 8860 Fax: 04 460 8879

Email: marketoperations@ea.govt.nz

Appendix A Example of four balancing areas: AJTOWN1BEETG, STHSUB2SPING, MADMALLEENZE, and WNDMIL1CHUNE

- A.1 <u>AJTOWN1BEETG</u> will have three entries in the **NSP** mapping table identifying EFG1101 NETA, ABC1101 NETA, and BNZ0331 NETA as the **NSPs** in the **balancing area** where EFG1101 NETA and ABC1101 NETA are the **grid**-connected **NSPs**, and BNZ0331 NETA is the interconnection point **NSP**.
- A.2 <u>STHSUB2SPING</u> will have three entries in the **NSP** mapping table identifying GHI1101 NETC, BNZ0331 NETC, and OPN0331 NETC as the **NSPs** in the **balancing area** where GHI1101 NETC is the **grid**-connected **NSP**, and BNZ0331 NETC and OPN0331 NETC are the interconnection point **NSPs**.
- A.3 <u>MADMALLEENZE</u> is an **embedded network** with one gateway **NSP** in the **NSP** mapping table XYZ0331 ENW1 whose parent **NSP** would be identified as ABC1101 NETA.
- A.4 <u>WNDMIL1CHUNE</u> is an **embedded network** with 2 entries in the **NSP** mapping table: gateway **NSP** LIG0331 ENW2 whose parent **NSP** would be identified as XYZ0331 ENW1 and interconnection point OPN0331 ENW2.

647379-4 9 of 11

Entries in the NSP mapping table

Owner	Registry NSP POC	Registry NSP network	Registry NSP description	Parent Pare POC netw		alancing area	Network type	Network connection status	Start date	Start trading period	End date	End trading period	ICP# of EN NSP (residual load ICP)*
NETA	ABC1101	NETA	Abacus		AJTO	DWN1BEETG	G	Α	01/01/1999	1			
NETA	EFG1101	NETA	Elfingrove		<u>AJT(</u>	OWN1BEETG	G	Α	01/01/1999	1			
NETA	BNZ0331	NETA	Bonanza Interconnection	ABC1101NETA	<u>AJT(</u>	OWN1BEETG	I	А	01/01/2003	15			
NETC	GHI1101	NETC	Goodhill		STH	SUB2SPING	G	Α	01/01/1999	1			
NETC	BNZ0331	NETC	Bonanza Interconnection	GHI1101 NETC	<u>STH</u>	SUB2SPING	I	А	01/01/2003	15			
NETC	OPN0331	NETC	Oponini Interconnection	GHI1101 NETC	STH	SUB2SPING	I	А	01/05/2004	25			
ENW1	XYZ0331	ENW1	Kirkwood Mall	ABC1101NETA	MAD	MALLEENZE	Е	А	01/10/2003	1			1234567890A 3123
ENW2	LIG0331	ENW2	Light Air Wind Farm	XYZ0333 ENW1	WNE	MIL1CHUNE	Е	А	23/04/2004	1			2345678901X Y234
ENW2	OPN0331	ENW2	Oponini Interconnection	LIG0331 ENW2	<u>WNE</u>	MIL1CHUNE	1	А	01/05/2004	25			

^{*} Blank indicates an **embedded network** reconciled using standard **UFE** process i.e. allocation to all **purchasers** and **direct consumers**, otherwise the 'differencing' method is used with allocation of the residual volume to the **retailer** providing **submission information** in accordance with the Code and **reconciliation manager** functional specifications and recorded at the **ICP** recorded here.

647379-4 11 of 11