

#### Briefing on Issues for Addressing Locational Price Risk

12 August 2008

#### **Purpose of briefing**

- Provide information to assist with submissions:
  - » the problem of locational price risk (LPR)
  - » How locational rental allocations (LRAs) would address LPR
  - » Results from benchmark locational rental allocation model
- Obtain initial feedback on whether LRAs should be investigated further



#### **Outline of this presentation**





### **Regulatory framework**



#### **Requirements of GPS**

#### May 2008 GPS:

- "The Commission should oversee the development of arrangements that will enable market participants to manage financial risk in respect of transmission losses and constraints.
- "The product developed should include the following broad principles:
  - » realistic long-term risk management mechanisms should be made available to all parties that face financial risks arising from spot price effects caused by transmission losses and constraints ["transmission hedges"];
  - » economic efficiency, including the integrity of price signals, should be maintained or improved; and
  - » solutions should be pragmatic and not overly complex."



#### **Provision for transmission hedges in Rules**

- Part F, Section V of the Rules "provides for the future development of financial transmission rights, by establishing a process for their design and introduction in accordance with the Government Policy Statement".
  - » But note May 2008 GPS



#### Why consider transmission hedges?

#### Hedge Market Development Steering Group (HMDSG):

 HMDSG's preferred package to improve operation of hedge market included transmission hedges – in particular, LRAs

#### Market Design Review:

- Main retailers have focused their mass-market retail activity into areas with lowest exposure to locational price risk (LPR)
- Access to transmission hedges would facilitate retail competition by improving retailers' ability to manage LPR where they do not have generation
  - » could allow main suppliers to broaden focus of their retail activity to areas of higher LPR, and enable entry of new retailers



## Locational price risk and how it is managed



### **Definition of locational price (LP)**

*LP* for node = nodal price – *LWAP* 

- Load weighted average price (LWAP) is the price purchasers would face if cost of losses and constraints was averaged across all load
- Above is a notional definition of LP as LWAP is only a proxy for the energy price



#### **Illustration of locational prices**





## **Energy price volatility**

Trading Period 36 daily LWAP 2006 Data





### Nodal price volatility relative to LWAP



- LWAP — MGM 0331 — BLN 0331



# Nodal price volatility of purchaser node vs generation node





#### **Energy price risk vs locational price risk**

2006



Node



## Locational price risk from gaming by generator-retailers



 Locational volatility not just about short term volatility of locational prices

Also about strategic risk



#### **Current approach to managing LPR**

#### Self-hedging

- Vertical integration of retailer/generators where exposed to locational price risk
- Location of load close to main generation centre (in theory)
- Consumers build own generation

#### Hedge market

- Purchase a single contract to cover both energy and locational price risk
- But often purchasers can only obtain hedges at major (generator) nodes
  - $\rightarrow$  Purchaser's energy price risk covered
  - $\rightarrow$  Still some exposure to LPR



# Impact of lack of transmission hedges



#### What problems does this cause?

Key Message #1: Lack of transmission hedges may inhibit development of the energy hedge market

- Lack of transmission hedges:
  - » Encourages costly self-hedging
  - » Encourages spot market purchasers to seek contracts as close as possible to their off-take node

 $\rightarrow$  disperses trading across many nodes rather than concentrating hedge trading at a few nodes to build liquidity



#### What problems does this cause?

#### Key Message #2: It may inhibit retail market competition

- Retailers unwilling to enter new markets because of high LPR
  - » Current players tend to have most of their customers close to their generation, which keeps their LPR lower than for a new entrant
- Australian retailers looking to enter NZ market have stated:
  - » the NZ hedge market functions poorly
  - » this is a major reason why they have not entered



## Why doesn't the market solve the problem?

Key Message #3: Concerns about market power in spot market make parties unwilling to offer transmission hedges on "imported" power

• Upstream generators: exposed to offering strategies of downstream generators, actions of grid owner and system operator, high spring washer effects

• *Transpower:* exposed to offering strategies of downstream generators, high spring washer effects

Banks, other independent parties: also exposed to these risks



## Why doesn't the market solve the problem?

Key Message #4: Firm access to loss and constraint (L&C) rentals is needed to address this problem

• ... but this is a policy decision that the market can't solve on its own



### **Current allocation of L&C rentals**



#### **Total cost of electricity vs total rentals** 1997-2007





## Current allocation of L&C rentals and locational price risk





#### **Current allocation of LCRs**



Key Message #6: Not all interconnection rentals are passed through to consumers

Key Message #7: 2006 proposal: use only interconnection rentals for LRAs as already paid to load parties

Can ignore impact on allocation of connection and HVDC rentals



#### **Options for managing locational price risk**



#### **Two main options**





#### LRA model



#### **Objectives of the LRA initiative**

- Reduce obstacles to Participants contracting for hedges at centralised nodes
- Enhance retail competition
- Promote economic efficiency
- While minimising administration and compliance costs
  - » Project currently excludes analysis of HVDC and connection rentals



#### Locational rental allocations (LRAs)

► In simple terms, if nodal price > reference price then:

Rebate = (nodal price – reference price) x purchaser's gross load x balancing factor

- Reference price determines:
  - » which nodes receive rentals
  - » how thinly rentals are distributed across the country



#### **Balancing factor**

#### • Balancing factor for each trading period is defined as:

Balancing Factor =  $\frac{\text{Total rentals}}{\sum_{\text{eligible nodes}} \sum_{\text{nodes}} (\text{Nodal price at eligible nodes} - \text{reference price}) \times \text{Load at eligible nodes}}$ 

Balancing factor ensures the pool of rentals is fully allocated



#### **Money flows with LRAs**





### Flow through of LRAs to end consumers

- ► LRAs paid to wholesale purchasers DCCs and retailers
- A key benefit of LRAs is potential to minimise LPR for retailers. If successful, this will assist in promoting retail competition
- Commission therefore proposes to rely on competition to ensure benefits of LRAs flow through to end consumers



## Impact of LRAs on effective marginal prices (EMPs)

*EMP*<sub>current</sub> = nodal price + impact of market power (if any) – marginal interconnection rentals payment

 Marginal interconnection rental = 0 for all but 12 or 100 trading periods (depending on region)

*EMP*<sub>LRA</sub> = nodal price + impact of market power (if any) – marginal LRA payment

Key Message #9: LRAs reduce EMPs for purchasers



#### Impact of reduction of EMP from LRAs

| Participant        | Market Power?    | Impact on EMP | Impact on<br>Efficiency | Reason                                                 |
|--------------------|------------------|---------------|-------------------------|--------------------------------------------------------|
| Purchaser          | Yes              | Reduced       | $\checkmark$            | <ul> <li>EMPs too high under<br/>status quo</li> </ul> |
|                    | No               | Reduced       | x                       | Reduced incentive to reduce<br>load when prices high   |
| Generator          | Yes              | Unchanged     |                         | Don't receive LRAs<br>therefore no impact on EMP       |
| Generator          | No               |               | ·                       | Can source hedge closer to<br>injection point          |
| Generator-Retailer | Yes (Generation) | Increased     | X                       | LRAs may increase<br>incentives to game prices         |
|                    | No (Generation)  | Reduced       | X                       | Reduced incentive to reduce<br>load when prices high   |



### **Treatment of losses**

- LRA payments in benchmark model include loss rentals as do current interconnection rental payments
- Inclusion of loss rentals in LRA payments reduces EMPs for purchasers
  - » Whether this is an advantage or disadvantage depends on degree of purchaser market power
- Commission is investigating LRA models that limit or exclude losses
- Even if LRA payments limited to constraint rentals only, EMPs for purchasers will still be reduced – but this is the case for any payment of rentals to purchasers


#### **Results of simulations of LRA benchmark model**



#### **Model used for simulations**

- Paper provides simulations of benchmark model only. This involves:
  - » Simple LRA formula (ie does not involve participation factors)
  - » Reference price = Generation-weighted Average Price (GWAP) adjusted for losses
  - » Current period load
  - » LRAs allocated every trading period
  - » Nationwide allocation of rentals



### **Overview of simulations**

- 1. 2002-2006
  - Geographic distribution of rentals
  - Impact on standard deviation of locational prices
  - Impact on locational value at risk (LVAR)
  - Impact on effective marginal price
- 2. Constrained trading periods
  - Geographic distribution of rentals
  - Impact on standard deviation of locational prices
  - Impact on effective marginal price
- 3. Dry periods

Two measures of LPR







#### **Geographic distribution of LRAs: 2002-2006**



- Nelson-Marlborough-West Coast receive the highest rental rate
  - Over double the next highest (Northland)
- West and south of the North Island receive the lowest rental rate



### Impact on standard deviation by node: 2002-2006



|        | Pre LRAs   | Post LRAs  | Reduction |
|--------|------------|------------|-----------|
| Range  | \$7 - \$34 | \$5 - \$14 |           |
| Median | \$14       | \$7        | 46%       |



### LVAR per MWh for five largest purchasers





#### LVAR per MWh for other purchasers





### LVAR per MWh for hypothetical retailers





## Impact on effective marginal price: 2002-2006



Mean nodal price without LRAs: \$64/MWh

Mean EMP with LRAs: \$62/MWh



### **Constrained trading periods**



## Impact of LRAs on volatility during constrained trading periods: 2006

LRA effect on SD of Price Difference - Constrained TPs





## **Distribution of rentals during constrained trading periods: 2005-06**





### **Impact on effective marginal price: Constrained trading period (1)**

15 February 2006 Trading Period 16





### Impact on effective marginal price: Constrained trading period (2)

19 June 2006 Trading Period 36









## Distribution of rentals during dry periods: 2003 and 2006







#### **Conclusions on simulations**

- Benchmark LRA model reduces LPR substantially, especially for purchasers in areas with high LPR
- Could therefore assist in reducing barriers to entry in retail market
- Benchmark model reduces EMP significantly in some scenarios
  - » Is this a problem?
  - » If yes, can alternative LRA models address it?



# Enhancements to benchmark LRA model



### **Participation factors (PFs)**

- When there are multiple constraints binding in SPD
  - » Multiple rental pools are created
  - » Using PFs in the LRA model ensures each rental pool is allocated to nodes in accordance with impact each constraint has on each node
  - » Approach could (in theory) be extended to losses



### **Availability of participation factors**

- Are PFs readily available to use for LRA initiative?
  - » PFs were not used for simulations in Issues paper
  - » Discussing with Transpower about whether and how PFs can be made available for LRAs
- Is it necessary to use complex model?
  - » Using simple LRA model would lump all rentals into one pool, over-allocating rentals to some nodes and under-allocating to others
  - » Simple model may turn out to be all that can be practically done simulations indicate significant reductions in LPR for nodes and spot market purchasers



#### **Key policy/parameter choices**





#### **Consultation**



#### **Proposed approach to consultation**

#### Step 1: Issues paper

- » Detailed information on LRA initiative
- Seeks feedback on whether submitters agree LRAs should be further investigated
- » Two month consultation period

#### Step 2: Detailed Options paper:

- » Describe alternative LRA parameter options
  - show impact on LPR, marginal price signals
- » Identify key issues, judgements for selecting preferred LRA option
- » Propose an initial preferred option for formal CBA and rule-change consideration
- » Obtain industry feedback on key parameter choices

#### **Step 3: Detailed Proposal paper**

- » Identifies Commission's preferred approach to addressing locational price risk, taking into account submissions
- » Full cost-benefit analysis
- » Assesses effect of preferred approach on market participants
- » Consideration of practical alternatives
- » Assessment against EC objectives
- » Draft rules, if appropriate

#### **Recommendation to Minister**

Subject to submissions



#### **Timeline: three step consultation**





#### **Discussion and Questions**

