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1 Purpose of this report 
1.1 This document covers a broad range of topics in the electricity market. It is published 

quarterly to provide visibility of the regular monitoring undertaken by the Electricity 
Authority (Authority). 

1.2 This report also includes: 

(a) Using Machine Learning Techniques to Forecast National Electricity Demand. 
 

2 Highlights 
2.1 Weekly load in the December quarter was slightly less than the historic average1, 

possibly due to partial lockdowns in parts of the country. Weekly load     also decreased 
over the quarter, due to warmer summer weather and the end of year public holiday 
period. 

2.2 Market share of large retailers has increased while market share of small-medium sized 
retailers has decreased, with Contact showing the greatest growth. Move in switching 
numbers have grown while trader switches have dropped. These trends are likely due 
to Covid restrictions loosening for certain parts of the country after being in multi-month 
lockdowns from August 2021. Trader switches on the other hand declined, possibly as 
consumers were otherwise occupied with the upcoming summer holiday period. 

2.3 Wholesale electricity prices remained relatively low when compared to the rest of the 
year, due to a combination of increased renewable generation and reduced seasonal 
demand. Spot  prices followed the pattern of decreasing when grid demand decreased, 
wind generation  increased, and gas and coal powered generation decreased. 

2.4 Wind generation was unusually high for the quarter, exceeding thermal generation. 

2.5 Despite below average inflows, total controlled hydro storage increased to its highest 
point of the year with most major lakes above their historical mean storage by the end of 
the quarter. 

2.6 Gas demand peaked, adding marginal gas into the market for the first time in 
months and lowering gas prices. 

2.7 Overall forward prices saw minimal change, however, forward prices in mid-2022 
were  priced at around ~$150/MWh, indicating that the market was factoring in higher 
than usual supply risk for winter 2022. 

2.8 Carbon prices in December’s ETS auction reached $68.20/tonne with ensuing 
secondary market prices exceeding the 2022 auction price cap of $70/tonne. 

3 Demand 
3.1 Covid restrictions continued to apply this quarter. October saw Alert Level 3 in place 

around the upper-central North Island region while the remainder of the country was at 
Alert level 2 ‘Delta’. On 11.59pm 2 December 2021 the Alert Level system was replaced 
by the COVID-19 Protection Framework (the traffic light system based on the vaccine 
pass). Initially Auckland, Northland and a large portion of Whanganui and Rangitikei to 
East Cape were set at red while the remainder of the country was set to orange. 

3.2 Figure 1 shows total daily national grid load over the 2021 December quarter against 
average daily national grid load for the 2016 to 2020 December quarters. Annotations 
display the weekly percentage difference between the 2021 load and the 2016-2020 

 
1 Averaged over October to December for 2016-2020 
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historical average load. 

3.3 Weekly differences in 2021 load compared to historic mean ranged between -4.2 per 
cent and 0.1 per cent. The largest difference of -4.2 per cent occurred in the last week of 
December.  

3.4 Weekly load decreased from 675 GWh at the beginning of the quarter to 586 GWh      by 
the end of the quarter. The trend of decreasing load can be attributed to a shift in 
seasons as the country transitioned into summer, with less heating and lighting required 
due to warmer weather and longer daylight hours. 

3.5 Reconciled demand for each month October, November and December 2021 was 3,410               
GWh, 3,276 GWh, and 3,243 GWh respectively. Commercial demand was around ~78 
per cent greater than residential demand   throughout the quarter. 

Figure 1: Daily Grid Load, Dec 2021 Quarter vs Historic Avg. 
 

 

 
4 Retail 
4.1 Market share and participant numbers remained similar to the previous quarter. Over the 

December 2021 quarter collective market share of the five largest retailers Contact, 
Genesis, Mercury, Meridian and Trustpower increased minimally by 0.02 per cent to 
84.2 per cent. 

4.2 On 31 December 2021 the five largest retailers held 1,878,213 ICPs between them, 
gaining 10,975 ICPs over the quarter while remaining small-medium sized retailers held 
352,509 ICPs between them, losing 1,298 ICPs over the quarter. 
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4.3 Figure 2 shows the changes in market share of each retailer from 1 October 2021 to 31 
December 2021. Contact showed the greatest growth gaining 0.23 per cent of market 
share over the quarter, well above second placed Powershop (parent company 
Meridian) which gained 0.09 per cent. The retailer with the greatest loss in market share 
was Genesis with a loss of 0.13 per cent. 

4.4 The largest change in ICPs by region by far came from Contact’s gains in Auckland with 
an increase of 4,002 ICPs over the quarter. 

Figure 2: Changes in Retailer Market Share2 

 
4.5 Figure 3 shows the number of electricity connections (ICPs) that have changed 

electricity suppliers from 1 October 2021 to 31 December 2021 categorised by type 
‘move in’, ‘trader’ or ‘half hour’.  Move in switches are switches where the customer 
does not have an electricity provider contract with a trader, whereas trader switches are 
switches where the customer does have an existing contract with a trader, and the 
customer obtains a new contract with a different trader. 

4.6 Over the quarter move in switches climbed, likely due to Covid restrictions loosening for 
certain parts of the country after being in multi-month lockdowns from August 2021. 
Trader switches on the other hand declined, probably as consumers were otherwise 
occupied with the upcoming summer holiday period. Move in switches increased by 
3,805 ICPs while trader switches declined by 1,893 ICPs. 

4.7 Compared to the previous five years total trader switches were at their lowest though 
total move in switches were above average. 

 
 
 

 
 

 
2 Please note that not all traders fit in the key, please go to emi.govt.nz/r/ssr0o to view key with all traders 
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Figure 3:ICP Switches by Type 2021 

4.8 All three conditions of sale were met for the sale of Trustpower’s retail business to 
Mercury with the High Court’s decision in mid-December to approve the proposed 
restructuring of Tauranga Energy Consumer Trust’s (TECT) trust deed. The acquisition 
is expected to be completed by the first quarter of 2022. 

5 Wholesale 
5.1 The majority of wholesale electricity spot prices remained below $200/MWh for the 

December quarter. Spot prices declined from the September quarter due to a higher 
percentage of renewable generation and reduced seasonal demand. 

5.2 Wholesale electricity spot prices from 1 October 2021 to 31 December 2021 are shown 
below in Figure 4. Spot prices averaged $68.54/MWh across all nodes with 95 per cent 
of prices falling between $0.01/MWh and $158.90/MWh. 

5.3 Following historical patterns, the end of year public holiday period when grid demand is 
at its lowest averaged the lowest prices for the quarter, around ~$27/MWh from 17 
December 2021. 

5.4 The highest prices for the quarter of just above $550/MWh occurred due to some 
combination of above average peak demand, low wind generation, unexpected 
generation and lines outages and a steep offer curve. 

5.5 Outages of note for the quarter include work for the Clutha Upper Waitaki Lines Project 
(CUWLP) which began on 4 October 2021. Consequent branch constraints at circuits 
from Clyde to Twizel and Naseby to Roxburgh caused periods of price separation in the 
region. 

5.6 Generally, outside of unusual circumstances spot prices decreased when grid demand 
decreased, wind generation increased, and gas and coal powered generation 
decreased. An increase in hydro storage also helped to lower prices by lowering hydro 
generation costs. Thermal generation offers set high prices for higher tranche offers due 
to a constrained gas supply keeping the cost of thermal generation high. 



                                                                7                                                          June 1, 2022 

Figure 4: Average Daily Wholesale Spot Prices 

5.7 Generation from renewable sources for the quarter averaged just over ~90 per cent of 
total generation. The rise in renewable generation has come from a combination of 
strong wind including extra capacity from Turitea North Wind Farm, steady geothermal 
and above average hydro. 

5.8 Figure 5 shows daily generation for the quarter by fuel type. Wind generation showed 
strong numbers with half hourly generation averaging 314 MW for the quarter or 7.3 per 
cent of total generation. Thermal peaker generation conversely was quite low, averaging 
16 MW or 0.3 per cent of total generation. Half hourly hydro generation averaged 2,900 
MW (65 per cent of total generation) and half hourly thermal generation averaged 258 
MW (5.7 per cent of total generation). Unusually, total wind generation exceeded total 
thermal generation for the quarter. 

 
Figure 5: Average Daily Generation by Fuel Type 
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5.9 Hydro generation was aided by an increase in hydro inflows and storage. Figure 6 shows 
total national controlled hydro storage for 2021. Over the December quarter hydro 
storage rose by 646 GWh from 3,503 GWh on 1 October 2021 to 4,149 GWh on 31 
December 2021. On 31 December 2021 hydro storage was at its highest point for the 
quarter as well as the year at 125 per cent of historical mean (3,315 GWh) and 94 per 
cent of nominal full (4,412 GWh). 

5.10 Though by historical standards hydro inflows were not especially strong for the quarter 
compared to earlier in the year inflows showed improvement with hydro storage also 
aided by reduced demand. Over the December 2021 quarter daily inflows averaged 79 
GWh for a total of 7,272 GWh. In comparison historical 1926-2020 December quarter 
data had daily average inflows of 82 GWh for a total of 7,618 GWh. 

 
Figure 6: Controlled National Hydro Storage 2021 

5.11 Figure 7 shows the storage of major catchments Hawea, Manapouri, Pukaki, Taupo, Te 
Anau and Tekapo for the quarter against their historical means and 10th-90th percentiles 
based on data from 1926-2022. With the exception of the Manapouri/Te Anau schemes 
the storage levels of major lakes over the quarter were quite healthy at well above their 
historical means and increasing close to their 90th storage percentiles. 

5.12 In the latter half of the quarter Lake Tekapo was forced to spill water to avoid going over 
its maximum operating range of 710.9m above sea level. The spill came from a build-up 
of water in the lake which was a result of Genesis upgrading its Tekapo B station from 
early October 2021 which halved its generation capacity to 80MW. 
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Figure 7: Major Lake Storage v mean, 10th-90th percentile 

 
 

5.13 Figure 8 shows gas production by major fields and gas consumption by major users for 
2021. 

5.14 Total gas production for the December quarter increased by 12.93 TJ/day from 392.52 
TJ/day on 1 October 2021 to 405.43 TJ/day on 17 December 2021 (before gas demand 
decreased due to the effects of the public holiday period). 

5.15 Maui became the largest producing gas field following the successful drilling of the sixth 
well of OMV’s Māui A Crestal Infill drilling campaign, which added over 30 TJ/day to gas 
production. Gas production at Māui on 17 December 2021 was 100.58 TJ/day. 

5.16 Production at Pohokura showed instability for most of October, following an extended 
outage in September, and fluctuated between ~70 TJ/day and ~100 TJ/day for most of 
the quarter. 

5.17 Consumption by major gas user Methanex increased. Gas consumption was high for 
most of the quarter peaking at 188.65 TJ/day in late December, up from ~95 TJ/day it 
was consuming in winter when it let its Motunui plant idle as part of a gas swap deal 
with Genesis (due to low hydro levels Genesis bought between 3.4PJ and 4.4PJ of gas 
from Methanex which it used to support thermal generation in winter). In December 
Methanex’s two plants were operating at or near capacity resulting in some surplus gas 
in the market for the first time since winter 2021. 
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5.18 Along with Huntly demand steadily declining, due to reduced demand for thermal gas 
generation gas, suppliers added marginal gas into the market. First Gas and related 
parties took advantage of this by increasing storage at Ahuroa. 

 
  Figure 8: Daily Gas Production and Consumption1 20213 

 

5.19 Figure 9 shows the Maui pipeline average marginal price (AMP) for the December 
quarter. Pricing data was taken from BGIX2 (Balancing Gas Information Exchange) 
which we use here as a proxy for gas spot prices. 

5.20 Following the increase in gas availability gas spot market trading volumes increased 
and spot prices dropped. Gas prices for most of the quarter fluctuated at around 
$10/GJ, half of what prices were in winter which often exceeded $20/GJ. Gas volume 
weighted average price (VWAP) was $11.36/GJ in October, $11.15/GJ in November 
and $9.50/GJ in December. 

5.21 Coal prices conversely rose significantly, with Indonesian coal (the coal Genesis 
imports to help power its Huntly Rankines) reaching over US$200/tonne at some points 
of the quarter, almost four times the price in 2020, due to a mixture of factors including 
Covid. The increase put the opportunity cost of running the Huntly Rankines at over 
~$200/MWh. 

5.22 Though Huntly’s coal stockpile was high at the end of quarter, Genesis numbers put the 
stockpile at 835,000 tonnes (1,670 GWh), an increase of 327,000 tonnes from 
September 2021, thermal generation offers tend to reflect the opportunity cost of using 
thermal fuel with offers based on current market prices rather than costs incurred. 

5.23 Notably in December no coal was required for electricity generation. 

 

 
 

 
3 https://www.gasindustry.co.nz/about-the-industry/gas-industry-information-portal/gas-production-and-major- consumption-charts/ 

http://www.gasindustry.co.nz/about-the-industry/gas-industry-information-portal/gas-production-and-major-
http://www.gasindustry.co.nz/about-the-industry/gas-industry-information-portal/gas-production-and-major-
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Figure 9: Daily Spot Gas Prices4 

 
 
 
 
 

 
4 https://bgix.co.nz/prices 
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6 Forward Market 
6.1 The ASX forward price curve provides a view of future wholesale spot prices. Figure 10 

shows forward prices for Otahuhu and Benmore at the beginning of the quarter and at 
the end of the quarter to illustrate how forward prices have changed over the quarter. 
Forward prices over December saw little change as trading activity took a pause over 
the public holiday period. 

6.2 Short term forward prices (Dec 2021 and March 2022 quarters) rose by 
around~$18/MWh over the quarter, sitting between $61.10/MWh and $115.25/MWh on 
31 December 2021. Long term forward prices either rose by a small amount or 
remained unchanged, increasing by an average of around ~5$/MWh and sitting 
between $71.75/MWh and $160.00/MWh on 31 December 2021. 

6.3 Forward prices in mid-2022 were priced at around ~$150/MWh showing the market is 
factoring in higher supply risk for winter 2022. Below average gas production and 
potential low future inflows at the time increased market participant concerns that the 
same conditions that caused high prices in 2021 could repeat in 2022. 

6.4 The concern for low potential future inflows came from NIWA’s November 2021 - 
January 2022 climate outlook5 which reported La Niña conditions occurring in the 
equatorial Pacific during October and moved NIWA to La Niña Alert. (During La Niña 
rainfall in the lower and western South Island is reduced which usually results in below 
average inflows and storage levels in South Island catchments.) 

6.5 On top of current limited gas production forward prices also factored in the risk outages 
scheduled in early 2022 at the Māui and Mangahewa gas fields could pose to thermal 
generation capacity. Maui is scheduled to undergo maintenance for 31 days from 26 
March 2022, undergoing a full field outage from 2 April 2022. Mangahewa was 
scheduled to undergo a 29 day turn around from 1 April 2022, which was later replaced 
with two new notices for two minor turn downs in March (6 days) and July (8 days). 
Concerns were that should these outages extend or return at less than full capacity 
thermal generation availability would be reduced during peak winter demand. 

 
 
 

 
5 https://niwa.co.nz/climate/seasonal-climate-outlook/seasonal-climate-outlook-november-2021-january-2022 
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Figure 10: Future Prices 
 

6.6 Long term forward prices compared to five years ago are noticeably higher. One of the 
factors that appears to play a role in the rise in forward prices is the increasing price of 
carbon which increases the costs of running thermal generation. 

6.7 Figure 11 shows spot NZ carbon unit prices since the first ETS auction began in 2020, 
taken from CommTrade’s (a platform for buying and selling NZ ETS carbon credits 
owned by Jarden Securities Limited) website. 

6.8 Overall carbon prices rose by 81.3 per cent in 2021. December 2021’s ETS auction 
broke records, rising 5 per cent to $68.20/tonne and ending with 4.75 million units sold 
with no units left in reserve. Following the auction secondary market prices proceeded 
to exceed $71/tonne (the auction cap for carbon prices in 2022 is $70/tonne). 

6.9 How the price of carbon feeds into thermal generation costs is that approximately ~40 
per cent of the price of carbon is added to the final cost of generation for a CCGT 
(thermal plant) and ~50-60 per cent for OCGTs (peaker plants) when run on gas and 
~100 per cent when run on coal. For example, when carbon is at $70/tonne an 
additional ~$28/MWh to ~$35/MWh would be added to the running cost of thermal 
generation when run on gas and ~$70/MWh would be added when run on coal. 

6.10 The gas outlook for 2023 should be greatly improved compared to 2022, with gas 
production increases expected at multiple fields. Some of the expected drops in gas 
prices, however, are likely to be offset by continued increases in carbon prices with the 
cap for ETS auctions in 2023 set to $78.40/tonne and $87.81/tonne in 2024. It is not 
clear that generators are facing gas supply constraints next winter, so the increased 
supply may simply mean more production by Methanex. 

6.11 With current renewable generation sources such as wind and solar too intermittent and 
capacity too low to provide the baseload and firming capacity that thermal generation 
currently does thermal plants are expected to continue to influence the market for a few 
more years to come. 
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Figure 11: NZ Carbon Unit Spot Prices6 

 

 

7 Deep Dive: Using Machine Learning Techniques to 
Forecast National Electricity Demand 

7.1 This report includes analysis which uses machine learning to forecast electricity 
demand in New Zealand, using observational and forecast weather data. The Gluon 
Time-Series Toolkit (GluonTS), a Python library for deep learning time series modelling, 
was used forecast national demand. Specifically, a model was built that considers any 
number of explanatory variables to calculate the national demand in each trading 
period.  

7.2 The analysis found that weather observations in major population centres are the 
greatest factor that determine demand. To calculate demand one or two days into the 
future, the best method is to use weather forecasts. This is accurate as long as the 
forecast and observed temperatures follows the same trends. 

7.3 This work on demand forecasting will feed into the response to the Authority’s Phase 2 
report into the events of 9 August 2021. In particular the Authority is assessing the 
accuracy of forecasting data that contribute to the pre-dispatch schedules, one of which 
is the demand forecast.   

 

 
6 https://www.commtrade.co.nz/ 
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Summary 

We use the Gluon Time-Series Toolkit1 (GluonTS), a Python library for deep learning time 
series modelling, to forecast national demand. Specifically, we built a model that considers any 
number of explanatory variables to calculate the national demand in each trading period. The 
evening of 29 Jun 2021 was especially cold and national demand peaked at 3.4 GWh. This 
provides an excellent opportunity to test our machine learning approach. We find that weather 
observations in major population centres are the greatest factors that determine demand. We 
explore how to build models in situations where data for some explanatory variables are 
unavailable. To calculate demand one or two days into the future, the best method is to use 
weather forecasts. This is highly accurate as long as the forecast and observed temperatures 
follows the same trends. 
 

 

 
1  (i) A. Alexandrov et al., GluonTS: Probabilistic and Neural Time Series Modeling in Python, J. Mach. Learn. 

Res. 21(116), 2020. (ii) A. Alexandrov et al., arXiv:1906.05264, 2019. 
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1 Method 
1.1 GluonTS is the first ever dedicated toolkit for building time series models based on deep 

learning and probabilistic modelling techniques. It bundles components, models and 
tools for time series applications like forecasting and anomaly detection. Well-
established open source packages like TensorFlow and PyTorch can perform time-
series forecasting, but they require a comparatively large amount of coding and therefore 
great proficiency in the area of machine learning. 

1.2 GluonTS can parse sequences of large collections of time series. Given a probabilistic 
model, the goal of forecasting is to predict the probability distribution of future values 
given the past values, covariates (features), and the model's hyperparameters.  

1.3 The package provides a wide variety of pre-built neural network based models. For 
example the DeepAR2 function uses a recurrent neural network (RNN) with LSTM or 
GRU cells, and estimates parameters of a parametric distribution or uses a 
parameterisation of the quantile function. 

1.4 The next section is a short overview of the mechanisms behind neural networks3. 

Neural networks in a nutshell 
1.5 Artificial neural networks (ANNs) comprise a web of computing units (artificial neurons) 

organised in homogeneous layers. There is one (passthrough) input layer, one or more 
hidden layers, and one final output layer. Each layer is connected to the next so that 
information flows between the layers (Figure 1). Each connection between layers mimics 
the behaviour of synapses in the brain. 

1.6 Abstractly speaking, artificial neurons are considered as functions that take some input 
values and returns a real number. They have two key roles: 

(a) Neurons multiply each input value with a corresponding weight coefficient and 
calculates the sum of all products. This operation is a scalar product of two 
vectors: input data and weights. 

(b) Neurons weigh each input value using an activation function (e.g. logistic sigmoid, 
tanh) and assigns a quasiprobability value to it. 

1.7 The backpropagation algorithm trains the ANN. It is an implementation of the gradient 
descent method which finds the minimum of a function by exploring values in the 
direction of the steepest descent. The algorithm makes a prediction at each neuron 
during the forward pass (going from input layer to output) and measures the error.  

1.8 The gradient is calculated on the weights on the output layer, and the error information is 
pushed backward to the previous layer where the calculation is repeated on the local 
weights. This recursive process continues until the error reaches the input layer. The aim 
is to minimise the error of the outputs. 

 

 
2  D. Salinas et al., DeepAR: Probabilistic forecasting with autoregressive recurrent networks, Int. J. Forecast. 

36(3):1181-1191, 2020. 
3  A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly (2nd ed.), 2019. 
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Figure 1: Simplest model is the feed-forward neural network with backpropagation 
algorithm. The network can have any number of nodes and layers. 

 
Source: Adapted from D. Esposito and F. Esposito, Introducing Machine Learning, Microsoft Press, 

2020. 
  
 

1.9 Time series analysis requires the concept of state to be built inside the ANN itself to 
make it possible to extrapolate based on historical information. The anatomy of a stateful 
ANN allows the information to leave tracks as it flows forward from the input layer to the 
output.  

1.10 For this purpose, recurrent neural networks (RNNs) contain hidden states and loops, 
allowing information to persist over time. Connections between neurons form a directed 
cycle which creates an internal state and allows the network to exhibit dynamic temporal 
behaviour. It follows the same concepts as the ANN and uses the same back 
propagation algorithm. 

1.11 RNNs use the idea of hidden state (or internal memory) by updating each neuron so that 
it remembers what it has seen before (Figure 2). The memory is preserved so that when 
the neuron reads an input 𝑋𝑋𝑛𝑛 at time step 𝑛𝑛, it also processes the content of the memory 
𝐻𝐻𝑛𝑛 (i.e. outputs of the previous time step 𝑛𝑛 − 1) and combines the information to 
generate an output for the current time step 𝑌𝑌𝑛𝑛. 
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Figure 2: Back propagation process in RNNs to compute gradient values. 

 
Source: F. Lazzeri, Machine Learning for Time-Series Forecasting with Python, Wiley, 2020. 
  
 

1.12 In order for the cells to remember information from the distant past and not just the 
previous timestep, the RNN can be built using long short-term memory (LSTM) or gated 
recurrent unit (GRU) cells (Figure 3). The internal mechanisms in both cells involve 
learning to recognise an important input (input gate); storing it in the long-term state; 
preserving it for as long as needed (forget gate); and extract it when needed. Both LSTM 
and GRU are useful for capturing long-term patterns in time series, long texts, audio 
recordings, and other applications. 

 

Figure 3: LSTM and GRU cells to replace green RNN cells in Figure 2. 

 
Source: A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly (2nd 

ed.), 2019. 
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Deep AR model 
1.13 In this report, we use a more sophisticated RNN based on Salinas et al.'s DeepAR 

model4. It is a forecasting method based on autoregressive RNNs, which learns a global 
model from historical data of all time series in the dataset (Figure 4).  

1.14 In the forecasting community, ANNs are typically applied to individual time series, i.e., a 
different model is fitted to each time series independently. In comparison, DeepAR 
tailors a LSTM-based RNN architecture to the probabilistic forecasting problem. 

 

Figure 4: Schematics of DeepAR method used by 
gluonts.model.deepar.DeepAREstimator function. 

Method follows the same structure as in Figure 2. The important addition is 𝑝𝑝, which is 
used to calculate the predicted distribution. Further technical details in paper. 

 
Source: Salinas et al. 
  
 

1.15 As well as having greater forecasting accuracy than classical approaches, DeepAR has 
several important advantages: 

(a) The model learns seasonal behaviours and dependencies on given covariates 
across time series. Minimal manual intervention in providing covariates is needed 
in order to capture complex, group dependent behaviour. 

(b) DeepAR makes probabilistic forecasts by taking Monte Carlo samples that can be 
used to compute consistent quantile estimates for all sub-ranges in the prediction 
horizon. 

(c) By learning from similar items, DeepAR can provide forecasts for items that have 
little or no history available, a case where traditional single item forecasting 
methods fail. 

(d) Our approach does not assume Gaussian noise, but can incorporate a wide range 
of distribution functions, so we can choose one appropriate for the statistical 
properties of the data. 

1.16 Points (a) and (c) set DeepAR apart from classical forecasting approaches. Points (b) 
and (d) are important to produce accurate forecast distributions that are learned from 

 
4  D. Salinas et al., DeepAR: Probabilistic forecasting with autoregressive recurrent networks, Int. J. Forecast. 

36(3):1181-1191, 2020. 
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historical behaviour of all time series. This has not been addressed by previous 
methods. 

Data inputs and output 
1.17 The idea is to feed inputs into the GluonTS algorithms to see how they affect the 

national demand.  

1.18 Inputs are the apparent temperature5 in major population centres (Auckland and 
Wellington, °C). Other inputs were also considered, such as the COVID-19 alert levels 
taken from government records of key events6. However we found that the model had 
the most accurate results when only given temperature data.  

1.19 The output is national demand (GWh)7. 

1.20 We use equally-spaced timesteps of 30 minutes, starting from 1 Mar 2014 00:00:00 
which was the first day that half hourly weather data was available (and without any 
missing or corrupted data). We choose 2 Jul 2021 23:59:59 as the end date, which gives 
us roughly 130,000 consecutive timesteps (i.e. trading periods) to train and test the 
model. 

Weather data 
1.21 Apparent temperature 𝑇𝑇𝐴𝐴 measures what an observer feels8. It considers four 

environmental factors: wind, temperature, humidity, and radiation from the sun: 

𝑇𝑇𝐴𝐴 = 𝑇𝑇𝑀𝑀 + 0.348𝐸𝐸 − 0.70 �𝑤𝑤𝑠𝑠 −
𝑄𝑄

𝑤𝑤𝑠𝑠 + 10
� − 4.25 (1) 

with dry bulb (measured) temperature 𝑇𝑇𝑀𝑀 (°C); wind speed 𝑤𝑤𝑠𝑠 (m/s) at an elevation of 
10m; net radiation absorbed per unit area of body surface 𝑄𝑄 (W/m2); and water vapour 
pressure (humidity), 

𝐸𝐸 =
RH
100

6.105 𝑒𝑒17.27 𝑇𝑇𝑀𝑀/ (237.7+𝑇𝑇𝑀𝑀) (2) 

in hPa where RH is relative humidity (%).  

1.22 For simplicity, we assume that the observer is outdoors in the shade so 𝑄𝑄 = 0.  

1.23 Instead of considering three environmental factors separately, the apparent temperature 
is a more compact way to estimate how hot or cold it feels in major population centres 
(Auckland, Wellington) and therefore the likelihood that many people will switch on air 
conditioners and heaters. 

2 Results 
2.1 Here are some examples showing how GluonTS models demand. We build different 

models that predict demand, based on what data is available. 

 
5  Source: Weather Underground. 
6  Source: History of the COVID-19 Alert System, https://covid19.govt.nz/alert-levels-and-updates/history-of-

the-covid-19-alert-system/ 
7  Source: Electricity Authority. 
8  R. G. Steadman, A Universal Scale of Apparent Temperature, J. Clim. Appl. Meteorol. 23(12):1674-1687, 

1984. 

https://covid19.govt.nz/alert-levels-and-updates/history-of-the-covid-19-alert-system/
https://covid19.govt.nz/alert-levels-and-updates/history-of-the-covid-19-alert-system/


 

 9 1 June 2022 1.48 pm 

(a) Many-to-one forecast models take more than one input and gives one output. This 
can be used when we know the weather in Auckland and Wellington. It is best 
suited for checking historical demand since we would have weather and demand 
data. 

(b) Many-to-many forecast models take more than one input and gives more than 
one output. This is used when we do not know the weather and need to predict the 
demand. We must therefore train the model and ask it to forecast both weather 
and demand. In other words, this method is used for predicting future trends. 

(c) One-to-one forecast models take one input and gives one output. Here we would 
only consider demand. 

Many-to-one model 
2.2 Figure 5 shows the results of a many-to-one model. Predictions are shown in orange, 

and actual demand is in brown. The orange line is the median of the model prediction. 
Probabilistic forecasting requires that we learn the distribution of future values so we 
need to specify the type of distribution of future values.  

2.3 GluonTS comes with many different distributions like Gaussian, Student-t, and Uniform. 
By default, the model assumes a Student-t distribution and LSTM cells. 

 

Figure 5: Many-to-one model. 

 
Source: Electricity Authority 
  
 

2.4 The shaded areas are the confidence intervals surrounding each prediction, in which 
90% and 50% of predictions are expected to fall. Smaller intervals imply greater 
confidence in the prediction. 

Many-to-many model 
2.5 Figure 6 shows the results of a many-to-many model. Observed values in orange. Model 

predictions in brown, blue and green. Since we do not know the weather inputs and have 
to predict demand, the model must calculate forecasts for all three variables.  

2.6 As expected, the predictions are poorer than for the many-to-one model. It is caused by 
the inaccurate temperature predictions for Auckland and Wellington. Because the 
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forecast temperatures are higher than actual temperatures, demand is expected to be 
lower. This will be a problem if we use this method to predict future demand. 

 

Figure 6: Many-to-many model. 

 
Source: Electricity Authority 
  
 

One-to-one model 
Figure 7: One-to-one model. 

 
Source: Electricity Authority 
  
 

2.7 The one-to-one model (Figure 7) only considers demand. The model clearly captures the 
M-shaped trend over the 48 trading periods, which correspond to the morning and 
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evening demand peaks. The predictions are slightly off since the model does not 
consider the cold weather. 

Many-to-one model, revisited 
2.8 In order to work around the issues shown in the many-to-many and one-to-one models, 

we can consider hourly or half-hourly weather forecasts for some future day. Because it 
was not possible to obtain the 29 Jun 2021 weather forecasts, we try another set of 
dates. 

2.9 Here we consider the end of Oct 2021. We want to predict future demand for 28-29 Oct 
2021. We define ‘future demand’ as a point in the future when we do not have historical 
weather data. This means we need to use weather forecasts.  

 

Figure 8: Apparent temperature data for Auckland and Wellington. 
Solid lines are observations, dashed lines are forecasts. 

 
Source: Weather Underground 
  
 

2.10 Figure 8 shows temperature forecasts (dashed lines) for Auckland and Wellington over 
28-29 Oct 2021. The data was acquired on 27 Oct 2021 at roughly 15:00. For 
comparison, we also plot observed temperatures over these two days (solid lines). This 
data was acquired after 29 Oct. 

2.11 Figure 9 shows the results of our model which is trained using a combination of historical 
(1 Mar 2014 - 27 Oct 2021) and forecast (28-29 Oct 2021) weather data. The model 
accurately predicts demand, as there is significant overlap between the confidence 
intervals and observed demand.  

2.12 Even though the weather forecasts do not precisely match the observations, they 
provide a decent prediction of the overall trend across 28-29 Oct 2021: decrease in 
Auckland temperature, and steep increase in Wellington temperature followed by 
gradual decrease. 
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Figure 9: Many-to-one model. 
Uses observed weather data over 1 Mar 2014 to 27 Oct 2021 period to train model. 
Then uses weather forecasts for 28-29 Oct 2021 to predict demand. 

 
Source: Electricity Authority 
  
 

2.13 To compare, we now train the model using only historical weather data that covers the 1 
Mar 2014 - 29 Oct 2021 period Figure 10. From inspection, both sets of model 
predictions are highly accurate.  

2.14 These results show the importance of using weather data to predict national demand. 
Compared to the many-to-many model in the above section, training the model to predict 
only demand is better than asking it to also predict the weather.  

2.15 Clearly there can be unpredictable behaviour and large variations in hourly temperature. 
Hence it is much better to train the model with a combination of historical and forecast 
weather and use this to predict future demand. 

 

Figure 10: Many-to-one model.  
Uses observed weather data for entire 1 Mar 2014 to 29 Oct 2021 period. 

 
Source: Electricity Authority 
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2.16 It is possible to numerically evaluate the quality of our forecasts. In GluonTS, we can 
compute many aggregate performance metrics9, such as coverage 

𝐶𝐶[quantile] = mean�𝑌𝑌 < 𝑌𝑌��, (3) 

mean absolute percentage error 

MAPE = mean�
|𝑌𝑌 − 𝑌𝑌�|

|𝑌𝑌| �, (4) 

mean absolute scaled error 

MASE =
mean|𝑌𝑌 − 𝑌𝑌�|

SE
 (5) 

with scaled error SE = |𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑡𝑡−𝑚𝑚|, and symmetric mean absolute percentage error 

sMAPE = 2 mean�
|𝑌𝑌 − 𝑌𝑌�|

|𝑌𝑌| + |𝑌𝑌�|
�  (6) 

2.17 The metrics are summarised in Table 1. 

 

Table 1: Metrics 

Metric Figure 9 Figure 10 
Coverage[0.9] 0.9062 0.8541 
MAPE 0.0256 0.0235 
MASE 0.5891 0.5553 
sMAPE 0.0259 0.0239 
Seasonal error 0.1019 0.1019 
 

 

Source: Electricity Authority 
  
 

 
9  R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice, OTexts (3rd ed.), 2021. 
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