Transpower's DR Programme

Unlocking EDB Value

IPAG's Questions

- How do you think Transpower's DR programme has worked so far?
- How could Transpower's DR programme work better in the future?
- Are there any implications and/or learnings from Transpower's DR programme for how EDBs could run flexibility schemes?
- I am going to focus on the third question

Why does an EDB want DER including flexibility?

Why does this matter?

- What are the EDB constraints?
 - Limited/no visibility at LV level but coming....
 - The network is not homogeneous
- Where are the opportunities for deferral?
 - Where will EV, PV batteries etc initially "cluster"
- GXP demand management is not the same as LV

DER/Flexibility Roadmap

Network Monitoring is required to understand operating conditions, which leads to identifying beneficial network services and economic value.

What are the steps to a DSO?

DER Markets for Real time network optimisation

- ✓ Operational Flexibility with Physical Assets + DERs in real-time
- ✓ Market Platform for DER Transactions between Multiple Parties
- ✓ Network Planning considers all alternatives
- ✓ Open Access for DERs

Distributior System Operator

DER Integration with Dynamic Network Operations

- ✓ ST Load and DER forecasts integrated into real-time operations
- ✓ LT Planning uses LV data, modelling to consider non-wire alternatives
- ✓ Network Heat Maps used to Identify System Deferral Opportunities
- ✓ Initial DER Services Product Development and Utilisation

System Integrator

Distribution Grid Modernisation

- ✓ Digital Systems Integration for Operations and Planning (ADMS etc)
- ✓ Improved Network Visibility, LV interval and NOD
- Initial Constraints Identification (heat maps, operational, etc)
- ✓ Standardised DER connections / auto-response capabilities

Intelligent Network

2025

2030

2035

>>>

Symphony Approach – Medium Growth

What can EDBs learn?

- The transmission system is:
 - Highly monitored for demand voltage, frequency, etc.
 - Highly monitored and controlled for generation strict connection and performance requirements
 - Designed for two way power flows
 - Market integrated security constrained economic dispatch, real time prices
- Vector's distribution system is:
 - Monitored for high/medium voltage
 - Information matters with ~560,000 ICPS / ~22,000 Dist Transformers / 110 Zone Substations
 - Manage via connection standards to limit cost of connection etc.
 - Consumption at LV level is limited to aggregate monthly values but moving to ICP half-hourly data
 - Managing distributed generation by evolving connection standards
 - Adapting design to two way power flows
 - Must link system characteristics to network topography etc.
 - Distribution not directly linked to energy markets
- Prices versus payments how does this fit in EDB revenue regulation?
- Lack of alternative options at edges of EDB networks creates opportunities for high DER services value (but also high variability for when / where / how long that value persists)
 - Getting it right is hard (see EU, Australia, UK, USA) -> Building Intelligent Networks is the no regrets first step

Sapere - DLMP

5		Potential Nodes	Average ICPs/Node
	GXP	179	11,167
	Zone Sub	1,261	1,658
	Distribution Sub	186,813	11
	ICP	2,090,113	1

Final Picture

This is not the future

