Preface

- For reader's information, these slides were prepared for the 7th May 2019 MDAG meeting.
- They address questions raised at previous meetings.
- The intention of the slides is to help group members to better understand aspects of the market and to assist with decision making.

South Island Market Changes

David Weaver
Concept Consulting
7th May 2019

Summary of "clear" evidence

- Offers on the Clutha scheme have increased in price in recent years.
- Offers are revised close to gate closure differently on the Waitaki:
 - In 2016, offers are revised within the last two hours to offer less capacity
 - In 2018, offers are revised within the last two hours to offer *more* capacity
- Price separation (and very low prices in the South Island) occurs less often in recent years.
- Clutha generation during off-peak periods has reduced in recent years.

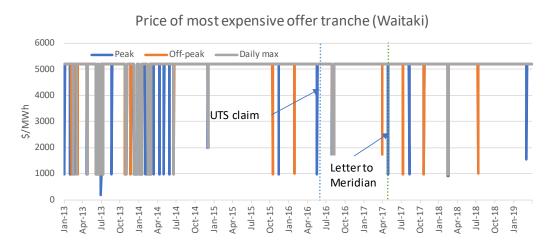
Outline of approach

- This report details initial findings from a review of changes to the South Island electricity market in recent years.
- It attempts to determine if any systemic changes in offer behaviour or market outcomes arose after the UTS claim for June 2016.
- Accordingly, it looks for differences between the period prior to June 2016 and the period after the EA's open letter to Meridian was published.
- Note that the South Island electricity market experienced some major physical and regulatory changes in and near the period under investigation that will complicate the analysis. Notably:
 - Pole 3 of the HVDC began operating in 2013
 - The national instantaneous reserve market started in October 2016
 - The way the HVDC is paid for by South Island generators was changed in September 2015
 - Gate closure was shortened in June 2017
- Similarly, hydrology will affect most of the analysis

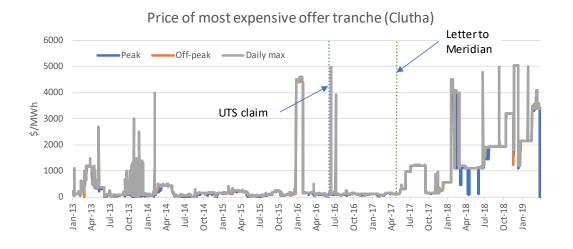
Hypothesis approach

- This is a broad topic. To focus our efforts, we approach this by positing a series of hypotheses, and attempting to find evidence that supports each hypothesis.
- This process is split into 3 sections:
 - generator behaviour.
 - market outcomes.
 - generator outcomes.
- We summarize the evidence for the hypotheses at the end of each section
- Evidence is ranked by the following scale:
 - none no evidence was found supporting the hypothesis.
 - some weak evidence was found supporting the hypothesis.
 - clear strong evidence was found supporting the hypothesis.
- This analysis is a "first pass", and does not normally use proper statistical tests. It is intended that this be used to direct further, more detailed analysis.

Hypotheses – Generator inputs



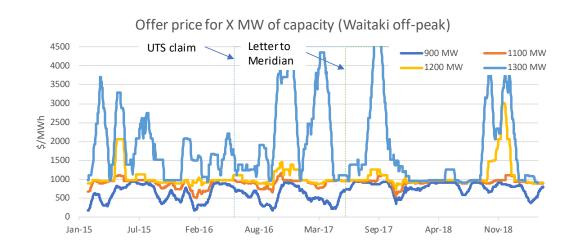
- This first section focusses on *inputs* to the system. These are things that generators have direct control over.
- The hypotheses for this section are:
 - that offers from South Island generators changed. Specifically:
 - o that the price of the most expensive offer tranche increased.
 - that the price of the highest "X" MW of generation increased.
 - o that the amount of generation offered at less than 1 \$/MWh increased.
 - that generators update their offers close to gate closure less often. This includes:
 - The last time of any update to offers.
 - Whether the total amount of generation under "X" \$/MWh was changed in the last 2 hours more often.

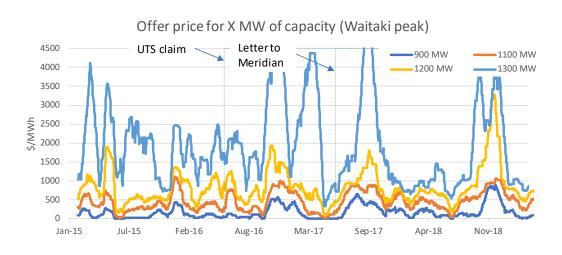

Offer prices – Maximum

- For the Waitaki, the highest tranche has normally been just over 5000 \$/MWh.
- There were more instances of a lower maximum price in 2013 and 2014.

 For the Clutha, the price of the highest trance has increased recently.

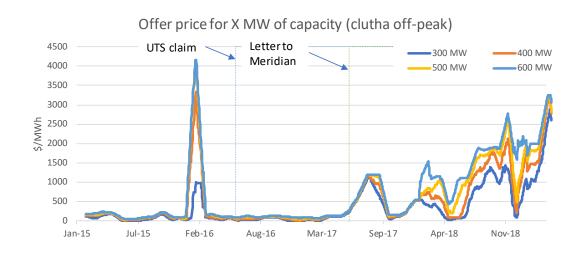
Offer prices – "X" MW

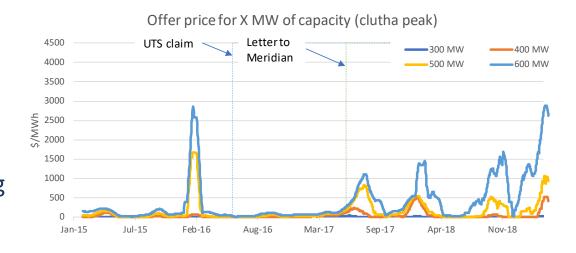



- As well as the absolute highest, we also looked at the price for "X" MW of capacity for each scheme.
- This is a useful way of visualizing the generator's offer stack through time.
- These prices are much more variable than the price of the absolute highest tranche, so results are presented as a rolling monthly (30 day) average.
- Two graphs are shown: one for peak and one for off-peak.

Offer prices – Waitaki

- No major change in offers for the Waitaki during offpeak periods.
- 900MW quantity is priced slightly higher since mid 2017.
 - Statistical test suggests time series is "different" from earlier period.
- No observable (or statistical) change for offers during peak periods.



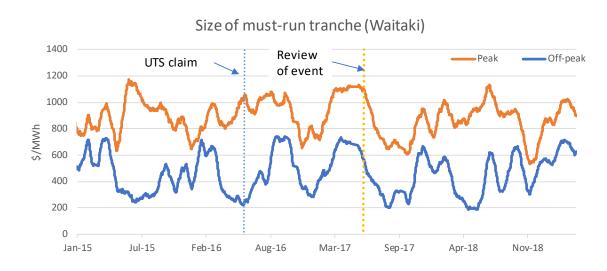

Offer prices – Clutha

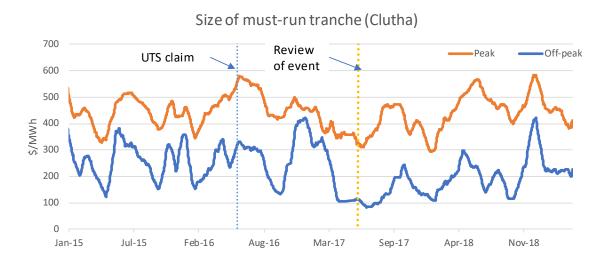
 Apart from a spike in early 2016, the price of high offers was consistently below 300 \$/MWh until mid 2017.

- Since then, offer prices have become more variable, with many periods above 1000 \$/MWh.
- This occurs both during peak and off-peak, although off-peak is more pronounced.
- (Bear in mind, these are rolling average prices).

Offer prices – Must run tranche

- This section investigates how much capacity a generator offers for less than 1 \$/MWh.
- At this price, it is highly likely that the generation will be dispatched, so this is often referred to as the "must run" tranche.
- This measure is highly dependent on water storage and tributary flows, so any changes may reflect hydrology, rather than a change in behaviour.

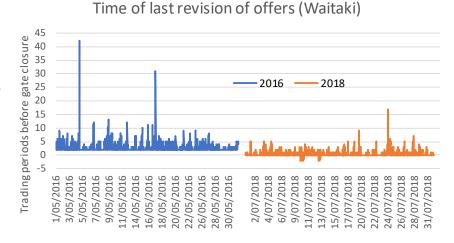

Offer prices – Must run tranche

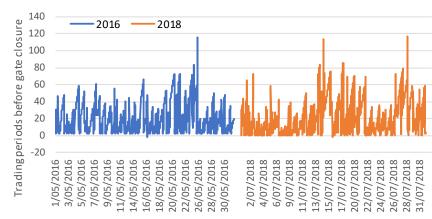


12

 No apparent change to Waitaki offers.

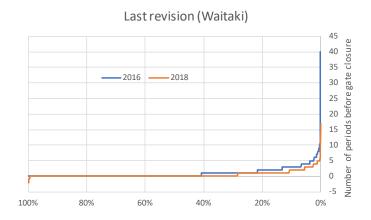
 For Clutha, the offpeak must run tranche appears slightly smaller in recent years – but this may be due to hydrology.

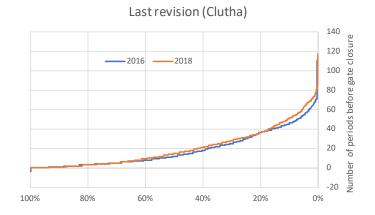



Revision of offers

- We looked at how far ahead of gate closure generators revised their offers for each period.
- We compared two months May 2016 and July 2018.
- The UTS and response to the UTS occurred between these two dates.
- Also between these two dates, gate closure was changed to be two trading periods later.
- There is no apparent difference between the two months.

Time of last revision of offers (Clutha)

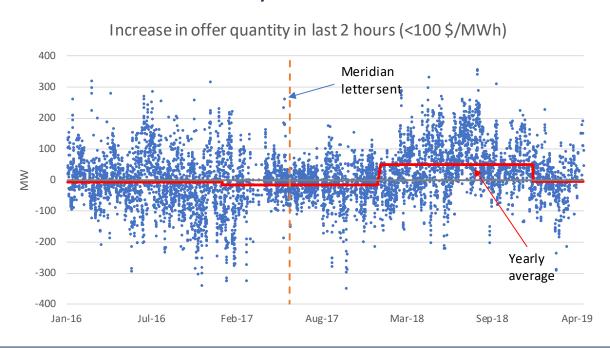

Concept_PPT_Presn.pptm As previous slide


Revision of offers

• To make any differences more obvious, we sorted the two previous graphs, and adjusted for changes to gate closure.

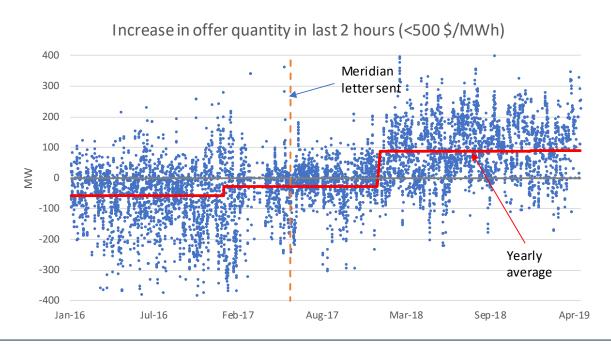
 There remains no apparent difference between the two months for either scheme.

Revision of offers - Quantity

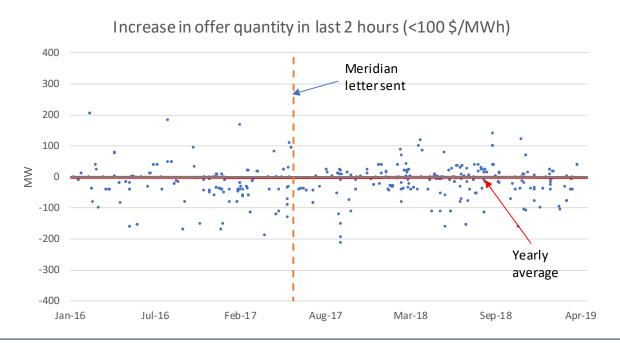


- To understand how generators revised their offers leading up to gate closure, we compared two values:
 - Total quantity of generation offered under "X" \$/MWh at gate closure, and
 - Total quantity of generation offered under "X" \$/MWh 2 hours prior to gate closure.
- We looked at how the difference between these two numbers changed over recent years.
- A positive value indicates that a generator's final offers provided more capacity to the market than their earlier offers.

Revision of offers – Waitaki under 100 \$/MWh


- Revisions to Waitaki offers under 100 \$/MWh changed in recent years.
- They were not significantly biased in either direction in 2016 and 2017.
- However, in 2018 quantity was increased close to gate closure:
 - About 50MW on average.
 - This trend was similar across all times of day.
- For the start of 2019, offers have reverted to earlier behaviour.

Revision of offers – Waitaki under 500 \$/MWh


- Under 500 \$/MWh the change is similar, but more pronounced.
- In 2016, quantity was normally decreased close to gate closure.
 - A change of about -50 MW on average.
- In 2018 and 2019, quantity was normally increased close to gate closure.
 - A change of about 90 MW on average.

Revision of offers - Clutha under 100 \$/MWh

- Offers were revised in only 6% of periods.
- When offers were revised, capacity was reduced close to gate closure, on average.
- Offers under 500 \$/MWh were similar.
 - The reduction in capacity was less in recent years.

Revision of offers – Other schemes

- We briefly looked at whether similar trends were apparent in other schemes.
- In general, other schemes have much less change to offers prior to gate closure, which means any impact of their behaviour is reduced.
- In particular:
 - Manapouri only revised offers in 5% of periods. When it did, changes followed the same trend as for the Waitaki scheme.
 - Huntly station only revised offers in 15% of periods. When it did, it tended to reduce quantity slightly (< 10 MW).
 - Waikato's behaviour differed for offers < 100 \$/MWh and < 500 \$/MWh:
 - Offers < 100 \$/MWh were revised for 55% of periods. It tends to reduce quantity slightly.
 - Offers < 500 \$/MWh were only revised in 30% of periods. There has been a gradual change to behaviour in recent years. In 2016, 30 MW of quantity was removed on average. In 2019, this was only 10 MW.
 - For reference, the Waitaki revised offers in 85% of periods.

Hypotheses revisited – Inputs

- That offer pricing strategy changed:
 - that the price of the most expensive offer tranche increased.
 - No evidence for Waitaki. Clear evidence of this for Clutha.
 - that the price of the highest "X" MW of generation increased.
 - Some evidence for Waitaki. Clear evidence for Clutha.
 - that the amount of generation offered at less than 1 \$/MWh increased.
 - No evidence for Waitaki. Minor evidence that this has decreased for Clutha.
- That generators update their offers close to gate closure less often:
 - The last time of *any* update to offers.
 - No evidence of any change.
 - Whether the total amount of generation under X \$/MWh was changed in the last 2 hours more often.
 - There is clear evidence that the Waitaki scheme has changed how they revise their offers close to gate closure.

Hypotheses – System outcomes

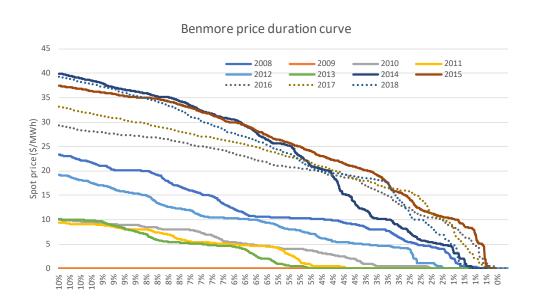
- The hypotheses in this section focus on what happened in the electricity system. Participants do not have direct control over these outcomes, but can indirectly influence them with their behaviour.
- They include:
 - That the structure and level of spot prices changed.
 - That the relative price between the two islands changed.
 - That flow on the HVDC changed.

Duration curves

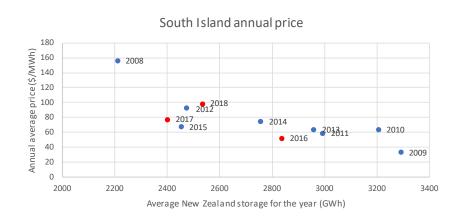
- We investigate many of the outcome hypotheses by using duration curves.
- Duration curves rank each trading period in a year from highest to lowest, and are a useful way of visualizing how a variable is distributed across many trading periods.
- There is one curve for each year.
- Sometimes only part of the duration curve is shown, allowing closer examination of relevant periods.

- For example, to focus on the highest or lowest priced periods.

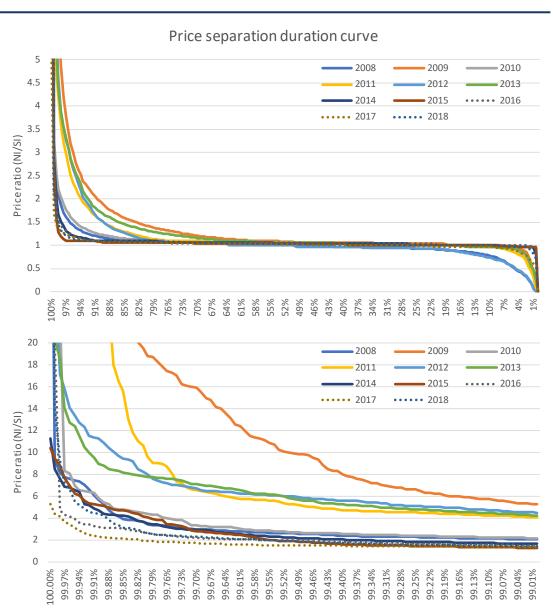
Duration curves – South Island spot price


- No obvious chance to structure of prices in recent years.
- More recent years dashed.

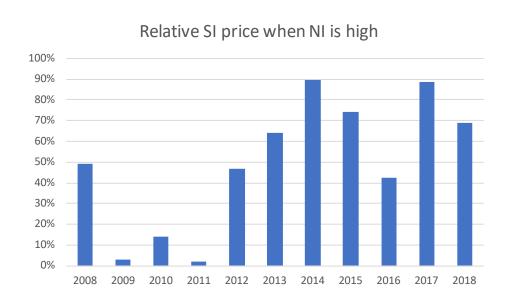
Duration curves – South Island spot price


- This is the just the bottom 10% of the previous duration curve, focussing on low priced periods.
- There is a clear trend over time.
 - More recent years have very low prices less often.
- May just be due to increased HVDC capacity since 2013.

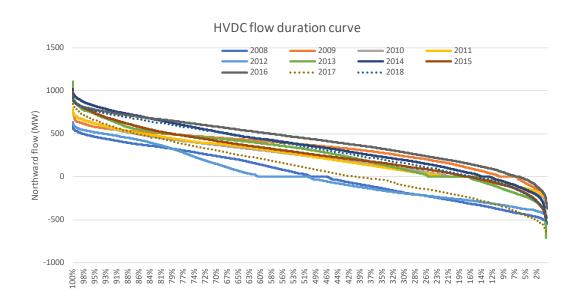
South Island spot price, continued


- The duration curves above show that South Island spot prices vary greatly over time.
- One key driver of South Island spot price is the amount of stored water, and there is a clear relationship between average stored energy and average spot price.
- After adjusting for stored energy, the level of prices in recent years appears consistent with earlier years.

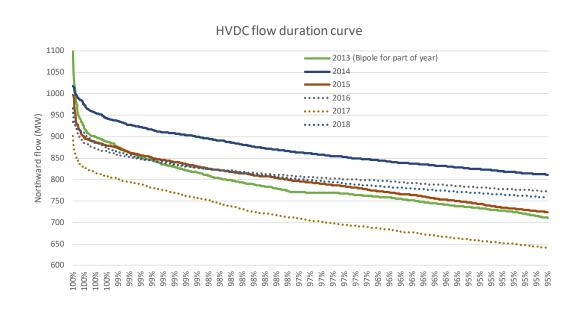
Duration curves – Price separation


- Price separation is much less likely to occur in recent years.
 - Particularly at the very top of the curve.
- May be influenced by increased HVDC capacity.
- Excludes periods with price
 10 \$/MWh in South Island.

High priced periods


- Another way to consider price separation is by looking at prices in the two islands when prices in the North Island are high.
- This graph shows the relative price for the top 20 NI periods in each year.
- In recent years, the price in the South Island is also high during these periods, whereas in earlier years, the price was often not.

Duration curves – HVDC transfer


- Highly dependent on hydrology.
- No clear trends present.

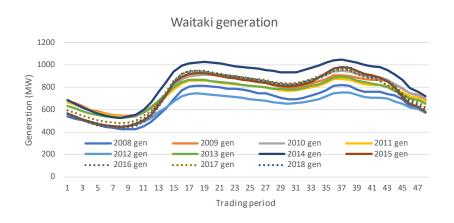
Duration curves – HVDC transfer

- Just focussing on the very top of the duration curve, and ignoring years with just a single pole (earlier years are all lower).
- More recent years have lower peak flow.

Hypotheses revisited – System outcomes

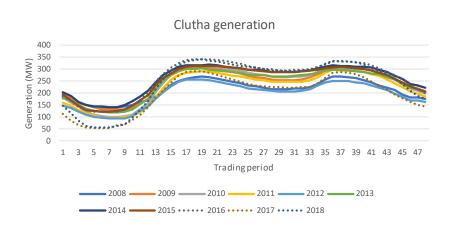
- That the structure and level of spot prices changed:
 - No evidence was found that average prices changed.
 - Clear evidence was found that very low prices occurred less often in recent years.
- That the relative price between the two islands changed:
 - Clear evidence was found that price separation occurs less since the HVDC bipole was installed in 2013.
- That flow on the HVDC changed:
 - No evidence was found that average flows have changed in recent years.
 - Some evidence was found that very high South to North transfers occur less frequently in recent years.

Hypotheses – Generator outcomes



- These hypotheses in this section focus on outcomes to generators in the South Island.
- These include:
 - That a generator's daily generation profile has changed. (Note that changes to total generation are not investigated, because this depends primarily on hydrology).
 - That the relationship between generation and price received for that generation has changed.

Generation profile - Waitaki

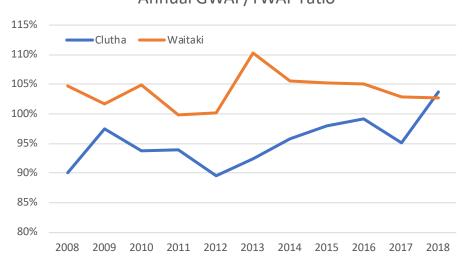

- Waitaki generation follows the familiar diurnal shape with a morning and evening peak.
- The shape has not changed significantly from year to year.
- The level of generation changes year to year depending on hydrology.

Generation profile - Clutha

- Clutha generation follows a similar shape to Waitaki.
- However, generation during off-peak periods has dropped noticeably in the past two years.
 - Similarly, peak generation has increased during this time period.
- May be influenced by HAMI/SIMI changes in late 2015.
- The level of generation changes year to year depending on hydrology.

Generator revenue vs spot price

- Generators will make more money by generating when the spot price is high. Unfortunately for hydro generators, high spot prices often occur during dry periods when generators can't generate much.
- One way to assess a generator's ability to generate during high prices is comparing the "generation weighted average price" (GWAP) to the "time weighted average price" (TWAP).
- A generator that is able to generate more when the price is high will have a higher GWAP than TWAP.

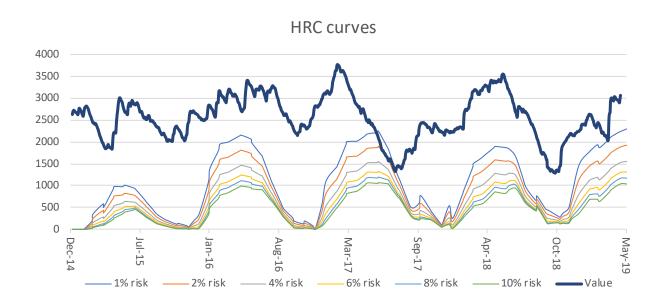

GWAP and **TWAP**

- The Waitaki is normally able to achieve a GWAP/TWAP ratio of greater than 1, and this hasn't changed in recent years.
- On the other hand, the Clutha normally can't.
 - However, Clutha had a GWAP/TWAP ratio of greater than 1 in 2018.
 - A single point not a clear trend.

• The difference between the schemes mostly reflects their different storage capacities.

Annual GWAP/TWAP ratio

Hypotheses revisited – Generator outcomes



- That generators' daily generation profile has changed:
 - Some evidence was found that generation on the Clutha has dropped during off-peak periods, and increased during peak periods.
 - No evidence was found that Waitaki generation profile changed.
- That the relationship between generation and price received for that generation has changed:
 - No evidence was found for this for either scheme.

Appendix A – HRC curves

- Hydrology can have a large impact on much of this analysis.
- National storage for recent years is shown for reference.

About Concept

- Concept is a specialist energy and economics consultancy that provides services to clients in New Zealand, Australia and the wider Asia-Pacific region.
- Concept provides advice on energy sector policy, business analysis, restructuring, market design, regulatory issues, energy modelling, market analysis, and technical issues.
- Combining economic rigour, leading modelling & analytical skills, and practical backgrounds in the energy sector, Concept consultants are able to provide practical solutions to client problems based on robust analysis.
- For more information, visit www.concept.co.nz or email info@concept.co.nz .

Disclaimer

- The information and opinions expressed in this presentation are believed to be accurate and complete at the time of writing.
- However, Concept and its staff shall not, and do not, accept any liability for errors or omissions in this presentation or for any consequences of reliance on its content, conclusions or any material, correspondence of any form or discussions arising out of or associated with its preparation.

www.concept.co.nz