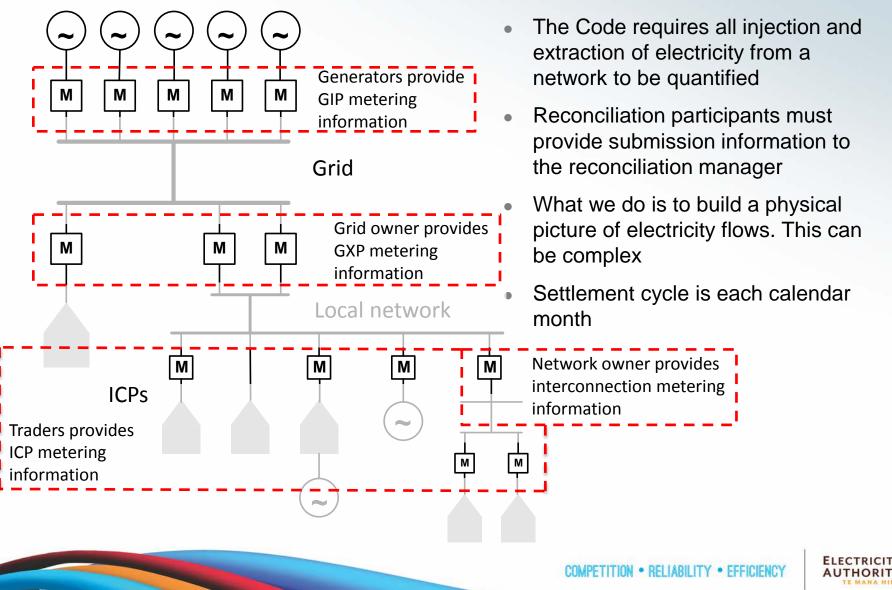


24 JUNE 2015 RECONCILIATION MANAGER

DISTRIBUTOR WORKSHOP

COMPETITION • RELIABILITY • EFFICIENCY

- The purpose of reconciliation is to process information into a form for subsequent use by the clearing manager to invoice purchasers and generators
- NZEM mostly uses full global reconciliation
 - Reconciles by each NSP
 - no net metering
 - traders provide information
 - allocates UFE and scaling
 - loss adjusts information to grid connection points
 - calculates unaccounted for electricity (UFE)
 - all buyers and sellers to NZEM do so on same terms
 - monthly revisions for R1, R3, R7 and R14
- Differencing reconciliation is used in certain circumstances



- As of 1 May 2008, new reconciliation rules were introduced
- The intention of the rules was to treat all buyers and sellers the same by ensuring that unaccounted for electricity (UFE) is shared fairly
- Since that time, there has been little change to the reconciliation process, and reconciliation
 participants must
 - ensure that there is an MEP for points of connection they are a reconciliation participant for
 - obtain meter readings for:
 - HHR certified metering installations: 100% of meters must be read every month
 - NHH certified metering installations: 90% of meters must be read every four months per NSP, and 100% of meters must be read every 12 months per NSP
- Reconciliation participants must provide 'submission information' for each month to the reconciliation manager, aggregated to the following criteria
 - for half hour metering installations: the aggregated half hour volume per NSP, loss category code, flow direction, day, and trading period
 - for NHH metering installations: the aggregated reconciliation period (reconciliation period) volume per NSP, loss category code, and flow direction.

- There are two distinct types of measurement recording used in the electricity market
 - non-half-hour (NHH) where volumes of electricity
 - are determined over a period of measurement greater than one trading period
 - are odometer type meter recording
 - over a period of time is calculated by subtracting a previous meter read from the current meter read
 - half-hour (HHR), where volumes of electricity
 - are determined for a period of less than one trading period
 - are recorded in absolute units and subtraction is not necessary to determine a volume
- The reconciliation process
 - synthesises NHH information into HHR information using "profiling"
 - Uses HHR information

- Reconciliation model solves for 378 NSPs by trading period, profile and loss category code, and allows for
 - grid connected generation
 - any amount of embedded generation
 - grid connections to local networks
 - interconnections between local networks
 - · interconnections to secondary networks
- Quantifies the total energy conveyed in a network (∑Injections)
- The reconciliation process
 - synthesises NHH information into HHR information using "profiling"
 - Uses HHR information

GLOBAL RECONCILIATION

Global reconciliation equation

$$0 = GXP_{metered} + \sum IP_{enter} + \sum EG_{metered} - \sum P_{retailer} - \sum IP_{exi}t + - \sum UFE$$

Where

- EGmetered = volume of electricity from an embedded generator per trading period invoiced to the retailer, determined by meter readings from each retailer, and loss adjusted by the reconciliation manager
- GXPmetered = volume of electricity per trading period metered for each grid connection point within a network area
- IPenter = volume of electricity that enters a network area from another network
- IPexit = volume of electricity that exits a network area to another network

Pretailer = volume of retailed electricity per trading period invoiced to the retailer, determined by meter readings from each retailer, and loss adjusted and scaled by the reconciliation manager

DIFFERENCING RECONCILIATION

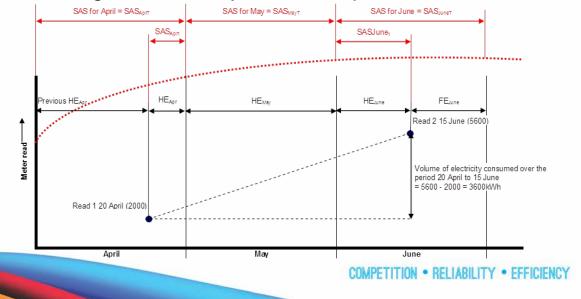
Differencing reconciliation equation

$$P_{\text{incumbent}} = GXP_{\text{metered}} + \sum EG_{\text{metered}} - \sum P_{\text{independent}} - \sum PI_{\text{independent}}$$

Where

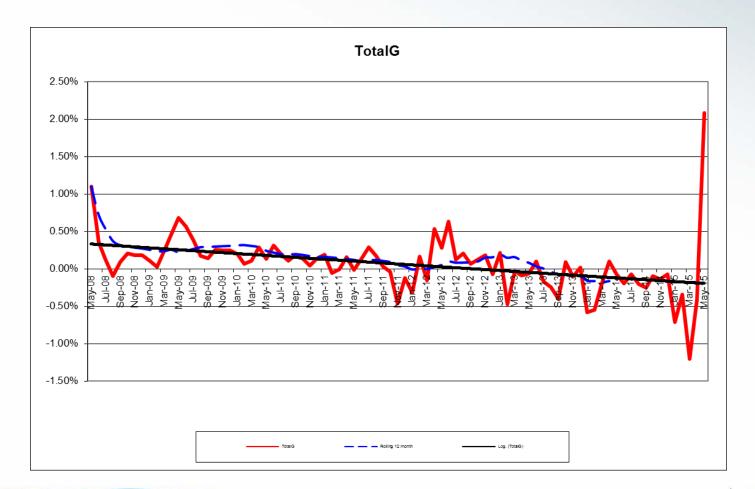
- EG_{metered} = volume of electricity from an embedded generator per trading period metered by an independent retailer
- GXP_{metered} = volume of electricity per trading period metered for each grid connection point within a network area
- P_{incumbent} = volume of electricity per trading period invoiced to the incumbent retailer
- P_{independent} = volume of retailed electricity per trading period invoiced to the independent retailer, determined by meter readings from each retailer

PL_{independent} = volume of losses of electricity per trading period calculated by the independent retailer and invoiced to the independent retailer


INFORMATION PROVIDED TO THE RM

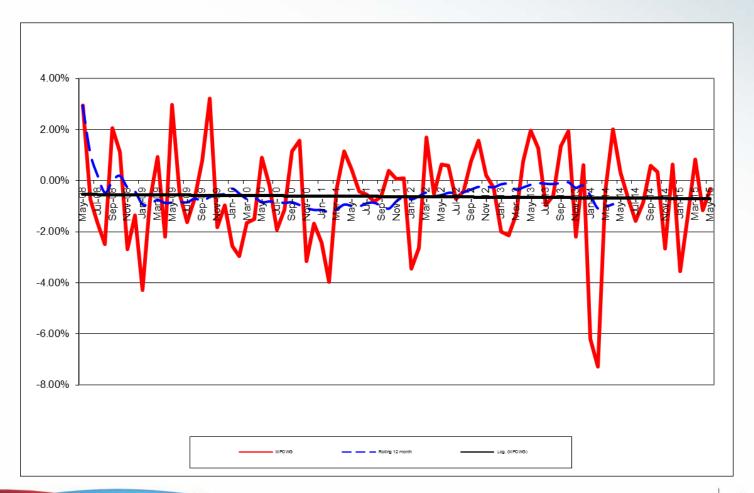
- Submission information
 - distributors must provide information to the registry
 - GXP for each ICP (used by traders in calculation of submission volume)
 - Loss category code for each ICP
 - Loss factors for each loss category code
 - distributors must provide information to the reconciliation manager
 - NSP information for interconnection point meters
 - balancing areas
 - The grid owner must provide information to the reconciliation manager
 - NSP information for all GXPs meters
 - The system operator must provide information to the reconciliation manager
 - The points of connection to the grid that were disconnected during each consumption period or supplied from an alternative point of connection (ie outage constraints).
 - traders must provide information to the reconciliation manager for the volume of electricity they have trade
 - For HHR submission this is aggregated half hour volumes
 - For NHH volumes this is profiled volumes

PROFILING

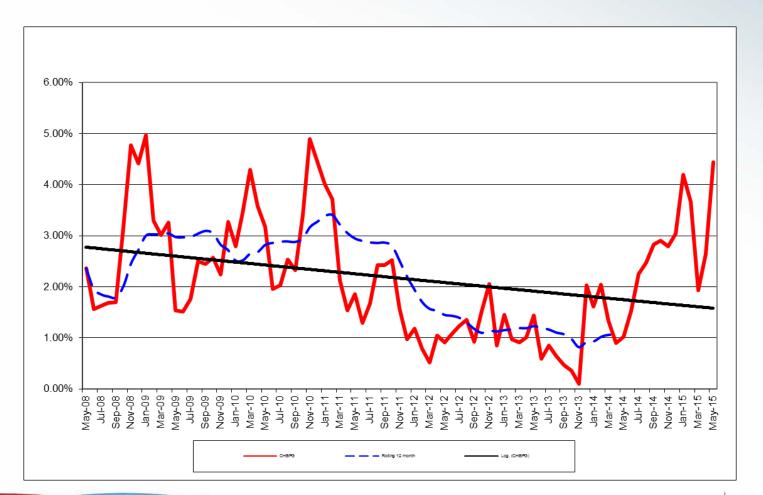

- It is necessary to synthesise NHH volumes into HHR
- Several steps to the process
 - Step 1 traders must obtain meter readings (90% by GXP every 4 months and 100% every 12 months)
 - Step 2 traders must use those meter readings to resolve NHH volumes into calendar months using "seasonal adjustment shapes

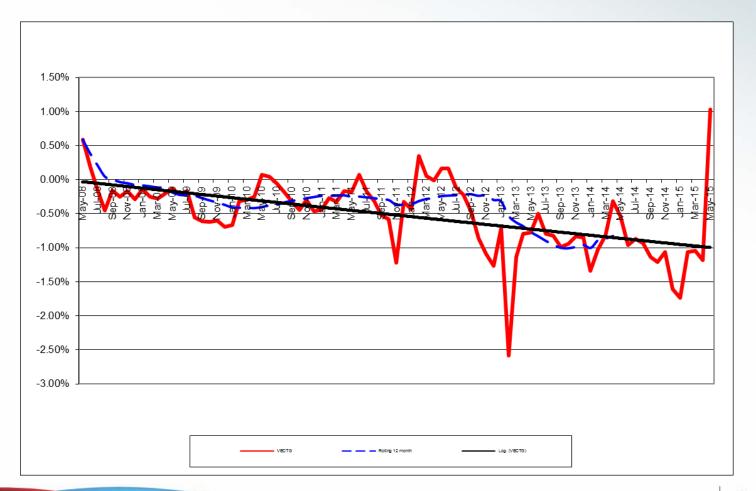
ELECTRICITY

AUTHORITY

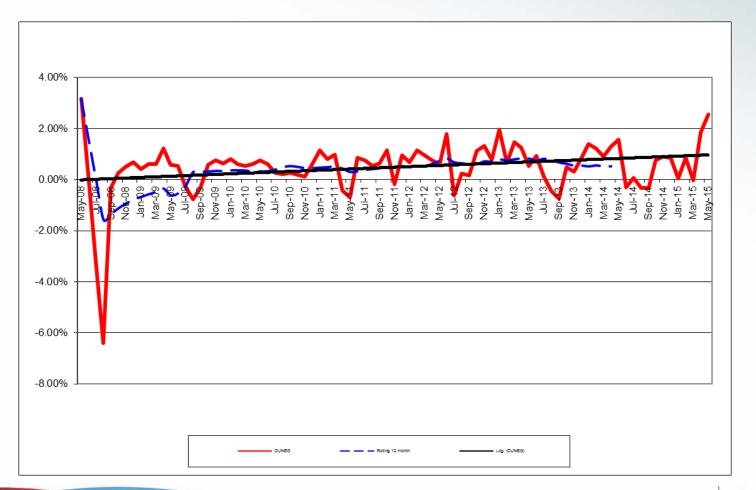

PHYSICAL SETTLEMENT – UFE FOR ALL "G"

COMPETITION • RELIABILITY • EFFICIENCY


NETWORK UFE – UNUSUAL PATTERN



NETWORK UFE – UNUSUAL PATTERN


NETWORK UFE – GOOD PATTERN

NETWORK UFE – BAD PATTERN

- Distributors may impact traders where there are changes to, or attempts to backdate information that has been used in the traders customer invoicing or market settlement processes
 - Creation of ICP identifiers
 - Incorrect address fields
 - Change of network participant identifier that ICP is connected to
 - Incorrectly assigning shared unmetered load
 - Network Supply Points (NSPs)
 - Price category codes
 - Loss factors
 - Direct billed status
 - Balancing areas

