Security and Reliability Council

Results of the Electricity Authority's investigations into the value of lost load

11 March 2015

Note: This paper has been prepared for the purpose of the Security and Reliability Council (SRC). Content should not be interpreted as representing the views or policy of the Electricity Authority.

VOLL

Background

The Security and Reliability Council's (SRC) functions include offering advice to the Electricity Authority (Authority) on reliability of supply.

The Authority Board receives the draft minutes of SRC meetings. Upon receiving the draft minutes of the 21 October 2014 SRC meeting, the Board requested that Authority staff provide the SRC with a summary of the results of the Authority's investigations into the value of lost load (VOLL). This was not a request for advice from the SRC; the Board wanted to be sure the SRC had been made aware of the Authority's VOLL investigation.

The purpose of this paper is to fulfill that request and enable the SRC to discuss the topic further (if needed). It may also serve as useful background to the following presentation to the SRC from the chairperson of the Quality of Supply and Incentives Working Group.

VOLL is an attempt to quantify the value of reliability

VOLL is relevant to the functions of the SRC because it can be used to quantify the economic cost of outages to consumers. To be able to determine whether consumers are getting an *efficient* level of reliability is dependent upon knowing how much consumers value reliability.

VOLL can be calculated, but one figure for all consumers is inappropriate

The Authority published the results of its investigations into VOLL in July 2013. The table of contents and executive summary of that report are attached to this cover paper.¹

The key findings of the investigation were that:

- a single VOLL figure is an inappropriate measure of the value that New Zealand electricity consumers place on unserved energy
- a carefully designed survey-based approach to estimating the VOLL works.

The SRC may wish to consider the following questions.

Q1. Does the SRC require further information relating to VOLL?

¹ The complete report is available from <u>http://www.ea.govt.nz/development/work-programme/transmission-</u> <u>distribution/investigation-of-the-value-of-lost-load/development/stage-3-report-on-methodology-and-key-findingsq/</u>

Investigation into the Value of Lost Load in New Zealand

Report on methodology and key findings

23 July 2013

Contents

Exe	cutive summary What is the value of lost load? The summary key findings of the Authority's VOLL study Key finding 1: A single VOLL is inappropriate Key finding 2: A survey-based approach to estimating VOLL works Purpose of this technical report	1 1 1 3 3
1	Introduction and purpose of this report The VOLL Challenges associated with deriving a VOLL Purpose of report	5 5 5 5
2	Background Use of the VOLL under the Code The Authority's use of the VOLL outside the Code The electricity industry's use of the VOLL outside the Code Derivation of the current VOLL in New Zealand Derivation of the VOLL in overseas jurisdictions Purpose and structure of the Authority's VOLL study	6 6 6 7 7 7
3	The summary key conclusions of the VOLL study A single VOLL is inappropriate A carefully designed survey-based approach to estimating VOLL works	9 9 10
4	Key underpinnings of the preferred survey approach used in estimating the VOLL Basis for an assisted survey approach using choice modelling and direct measurement Approaches to deriving a VOLL Survey-based approach superior to model-based approach Choice modelling Mail-out surveys no longer preferred for choice modelling VOLL study conclusion – use assisted choice modelling	12 12 13 13 13
	Basis for presenting the price attribute as an absolute dollar amount Approaches to presenting the price attribute VOLL study conclusion – present the price attribute in dollar terms and as a proportion of	15 15 15
	consumption Basis for exploring interaction effects between power outage attributes The 'linearity' problem VOLL study conclusion – explore the interaction effects between the attributes of a power	16 17 17
	outage The importance of an up-to-date and representative consumer database Data cleansing a significant cost VOLL study conclusion – an up-to-date and representative consumer database is needed	18 19 19 19
5	Key areas of further research on the VOLL methodology Willingness to pay versus willingness to accept Experimental economics approaches	20 20 21
Арр	endix A Approach to the Stage 2 VOLL surveys Stage 1 recommendations Stage 2 approach Direct measurement survey (face-to-face interviews) Mail-out surveys using stated choice questions	23 23 23 23 25
Арр	endix B VOLL calculation methodologies used in Stage 2 Stage 2 conclusions about the calculation of estimated VOLLs	36 46
Арр	endix C VOLLs estimated from Stage 2 survey data Introduction Regional VOLLs Auckland VOLLs Christchurch VOLLs Taranaki VOLLs	48 49 49 51 53

	National VOLL Qualifications Findings / obs	s ervations from the 2010 direct measurement VOLL survey	56 56 57
Арре	endix D Stage 2 recom Stage 3 appro Stage 3 conclu	Approach to the Stage 3 surveys Imendation – Conduct at least one further survey of electricity consumers ach Isions	59 59 59 60
Арре	endix E Introduction Modelling issu Limitations and Results obtain Conclusions	Discussion on the stated choice question sets used in Stage 2 of the VOLL study es d implications of the approach ed	61 61 62 62 70
Appendix F Limitations associated with using a minimum compensation question Introduction Sample size Hypothetical bias Transformation of responses into a MWh value Treatment of outliers Focus on compensation (willingness to accept versus willingness to pay) Aggregation procedure		Limitations associated with using a minimum compensation question ias n of responses into a MWh value putliers pensation (willingness to accept versus willingness to pay) rocedure	72 72 73 74 74 75 76
Refe	rences		79
Glos	sary of abbrev	iations and terms	81

Tables

Table 1	VOLL for Auckland respondents, 8 hour outage	2
Table 2	VOLL for Christchurch respondents, 8 hour outage	2
Table 3	VOLL for Taranaki respondents, 8 hour outage	3
Table 4	Mail-out survey attributes	29
Table 5	Distribution of the VOLL pilot survey questionnaires	31
Table 6	Response rates for the pilot mail-out VOLL survey	32
Table 7	Distribution of the main VOLL survey questionnaires	32
Table 8	Response rates for the main mail-out VOLL surveys	33
Table 9	Challenges associated with the mail-out VOLL surveys	34
Table 10	Direct measurement survey VOLL calculation methodology	37
Table 11	Non-load-weighted VOLL from direct measurement survey	37
Table 12	VOLLs by sector classification	38
Table 13	Mail out survey VOLL input assumptions	40
Table 14	VOLL for an 8 hour outage, from mail-out surveys	43
Table 15	Sensitivity analysis – Base case assumptions and results	43
Table 16	Sensitivity to energy component of electricity bill (medium and large non-residential consumers only)	44
Table 17	Sensitivity to working hours per day	44
Table 18	Sensitivity to energy price paid	45
Table 19	Sensitivity to high energy component of bill, low energy price, low hours worked	45
Table 20	Sensitivity to low energy component of bill, high energy price, high hours worked	46
Table 21	Mail out survey VOLL input assumptions	47
Table 22	VOLL for Auckland non-residential respondents, 10 minute outage	49
Table 23	VOLL for Auckland non-residential respondents, 1 hour outage	49

Table 24	VOLL for Auckland respondents, 8 hour outage	50
Table 25	Average VOLL by sector and size, 10 minute outage, Auckland non-residential	50
Table 26	Average VOLL by sector and size, 1 hour outage, Auckland non-residential	50
Table 27	Average VOLL by sector and size, 8 hour outage, Auckland non-residential	51
Table 28	VOLL for Christchurch non-residential respondents, 10 minute outage	51
Table 29	VOLL for Christchurch non-residential respondents, 1 hour outage	52
Table 30	VOLL for Christchurch respondents, 8 hour outage	52
Table 31	Average VOLL by sector and size, 10 minute outage, Christchurch non-residential	52
Table 32	Average VOLL by sector and size, 1 hour outage, Christchurch non-residential	53
Table 33	Average VOLL by sector and size, 8 hour outage, Christchurch non-residential	53
Table 34	VOLL for Taranaki non-residential respondents, 10 minute outage	53
Table 35	VOLL for Taranaki non-residential respondents, 1 hour outage	54
Table 36	VOLL for Taranaki respondents, 8 hour outage	54
Table 37 Average VOLL by sector and size, 10 minute outage, Taranaki non-residential		55
Table 38	Average VOLL by sector and size, 1 hour outage, Taranaki non-residential	55
Table 39	Average VOLL by sector and size, 8 hour outage, Taranaki non-residential	55
Table 40	Residential consumer category utility estimates	63
Table 41	Estimated 'willingness-to-accept' compensations for residential consumers	65
Table 42	Non-residential (small) consumer category utility estimates	67
Table 43	Estimated 'willingness-to-accept' compensations for non-residential (small) consumers	69
Table 44	Median and average required compensation for residential respondents, by number of outages experienced in last 12 months	73

Figures

Figure 1	'Demand' curve for unserved energy, for Auckland 2010 VOLL survey respondents, 8	ndents, 8	
-	hour power outage	1	
Figure 2	'Demand' indirect costs of power outages	36	

Executive summary

What is the value of lost load?

The value of lost load (VOLL) is a measure of the economic value given to an amount of electricity that is prevented from being delivered to consumers (i.e. is 'unserved') as a result of a planned or unplanned outage of one or more components of the electricity supply chain.

The VOLL is therefore the economic cost attributed to such an outage.

In the Electricity Industry Participation Code (Code), the VOLL is referred to as "the value of expected unserved energy" and is:

- \$20,000/megawatt-hour (MWh), or
- such other value as the Electricity Authority (Authority) may determine.

The summary key findings of the Authority's VOLL study

The Electricity Authority (Authority) has recently completed a study of the VOLL in New Zealand, which was commenced under the former Electricity Commission. The summary key findings of this study are:

- 1) a single VOLL figure is an inappropriate measure of the value that New Zealand electricity consumers place on unserved energy
- 2) a carefully designed survey-based approach to estimating the VOLL works.

Key finding 1: A single VOLL is inappropriate

At best the VOLL is a range of values that different kinds of electricity consumer consider to be the economic cost of power outages. These values can be treated as a distribution, with parameters to describe the average and the spread of values, as shown in Figure 1.¹

Figure 1 'Demand' curve for unserved energy, for Auckland 2010 VOLL survey respondents, 8 hour power outage

¹ The demand curve in Figure 1 is limited to \$100,000 on the y-axis and 80 MWh on the x-axis for presentation purposes, but there are data outside those ranges (although the graph shows nearly all of the survey sample).

Instead of representing the VOLL as a distribution of values, tables of VOLLs can be generated that are based on these values. An example of this approach is shown below, where regional VOLLs for Auckland, Christchurch and Taranaki have been calculated using data from the survey undertaken in Stage 2 of the VOLL study.

To put the residential values in these tables into context, if a household loses power for 8 hours on a winter evening, and that household's average electricity consumption over those 8 hours is 3 kilowatts (kW), the economic cost faced by that household from the outage is approximately:

- \$288 if the household is in Auckland
- \$356 if the household is in Christchurch
- \$505 if the household is in Taranaki.²

Table 1 VOLL for Auckland respondents, 8 hour outage

By respondent type and average across samples

Respondent	VOLL	
Residential	\$11,980	
Small non-residential	\$56,815	
Medium non-residential	\$27,992	
Large non-residential	\$3,906	
Average	\$14,900	
Source: NZIER		

Note: The average is weighted by consumption, so it is not the mean of the other figures shown in the table.

Table 2 VOLL for Christchurch respondents, 8 hour outage

By respondent type and average across samples

Respondent	VOLL
Residential	\$14,818
Small non-residential	\$69,761
Medium non-residential	\$46,686
Large non-residential	\$10,940
Average	\$18,690

Source: NZIER

Note: The average is weighted by consumption, so it is not the mean of the other figures shown in the table.

² Taking the example of the Auckland residential electricity consumer, \$11,980/MWh is equivalent to \$11.98/kWh, which is then multiplied by the consumer's (average) hourly usage (3 kWh) and the duration (8 hours) of the power outage, which gives a cost to the consumer of \$287.52 (\$11.98/kWh x 3kW x 8 hours).

Table 3 VOLL for Taranaki respondents, 8 hour outage

By respondent type and average across samples

Respondent	VOLL
Residential	\$21,049
Small non-residential	\$32,101
Medium non-residential	\$9,906
Large non-residential	\$7,383
Average	\$9,377

Source: NZIER

Note: The average is weighted by consumption, so it is not the mean of the other figures shown in the table.

Key finding 2: A survey-based approach to estimating VOLL works

Estimating a VOLL is not straightforward because there is no market for electricity consumers to choose between purchasing different levels of security of electricity supply (i.e. choosing between purchasing different price/reliability packages). Consequently there are no readily identifiable prices for differing levels of electricity reliability.

The use of surveys is by far the most popular approach to estimating a VOLL. The VOLL study has confirmed that a survey method using a combination of the 'choice modelling' and 'direct measurement' survey approaches can be used to derive VOLL figures.

The VOLL study has been very beneficial in confirming (and in some instances extending) various guidelines for conducting VOLL research in this regard.

Purpose of this technical report

This technical report summarises the findings of Stage 2 and Stage 3 of the VOLL study, and describes the research approach used in each stage.

A companion document entitled 'Investigation into the Value of Lost Load in New Zealand: Guideline for conducting a VOLL survey' describes a suggested methodology for researching the VOLL in New Zealand.