

Managing locational price risk

Proposed amendments to Code 19 April 2011

Agenda

- Background
- Problem definition
- Proposals to address problems
- Design issues
- Cost-benefit analysis
- Next steps

Requirements of Act: s.42

Authority must have, by 1 November 2011:

- Amended the Code to include "mechanisms to help wholesale market participants manage price risks caused by constraints on the national grid" (s.42(2)(c)); or
- to extent the Code does not include this matter, delivered a report to the Minister that:
 - explains why the Authority has not amended the Code to include it;
 - suggests alternative methods by which it is or may be provided for; and
 - sets out if, when, and how the Authority proposes to provide for it (section 42(2)(c) of the Act).

Consultation

4

Project objective

- "To promote competition in the electricity industry for the long-term benefit of consumers"
 - Consistent with Authority's statutory objective

Agenda

- Background
- Problem definition
- Proposals to address problems
- Design issues
- Cost-benefit analysis
- Next steps

2010 problem definition still applies:

- LPR has resulted in a lack of:
 - retail competition; and
 - hedge market liquidity
- LPR primarily managed through vertical integration
 - Most retailers concentrated in one island
 - Key motivation for asset swaps

Submissions raised two key issues:

- Need for inter-island LPR solution given availability of swaps?
- Does solution reflect likely future LPR?

Will swaps solve problem?

- Providers of LPR products could construct swaps using OTA, BEN futures; but
- No natural party is available to match swap (next slide)
- Must charge a high premium as exposed to actions of parties facing weak competitive pressure
- \rightarrow participants manage LPR through:
 - balancing local generation and load
 - not entering retail where don't have generation
- Net effect: reduced competition

Volume of hedges with and without settlement surplus Proportion of risk taken

Future LPR: Updated Energy Link analysis

- LPR likely significant problem in future
 - Would increase with scarcity pricing
- Over time AC higher proportion of LPR than HVDC
 Primarily because of lesses
 - Primarily because of losses
- 67% of all modelled constraints to 2025/26 caused by HVDC or Bunneythorpe-Haywards equation constraint
 - Covered by inter-island FTR

Agenda

- Background
- Problem definition
- Proposals to address problems
- Design issues
- Cost-benefit analysis
- Next steps

Inter-island FTR: Overview

- Price difference between Otahuhu and Benmore
- monthly auctions
- available 1 year out initially, 2 years out after 3rd year of operation
- one month duration
- 0.1MW
- One-way (option) and two-way (obligation)
- Funded by rentals between Otahuhu and Benmore
- Secondary trading
- Allocation of residual: Method and recipients to be determined
- Amendments to Parts 1, 13 and 14 of Code

Regulatory and operational framework

Agenda

- Background
- Problem definition
- Proposals to address problems
- Design issues
- Cost-benefit analysis
- Next steps

Nodes and hubs

- For the purpose of establishing:
 - FTR reference prices: Otahuhu and Benmore grid reference points
 - Prices used for ASX futures
 - FTR quantity: hubs at Otahuhu and Benmore

Products

- Obligation FTRs:
 - Payout if price at receiving node > price at sending node
 - Must pay if price at receiving node < price at sending node
- Option FTRs:
 - Payout if price at receiving node > price at sending node
 - No requirement to pay for opposite

Example: BEN, OTA Prices – Feb 2011

Nodal Prices – 16:00 on 22 Feb 2011

ELECTRICITY

AUTHORI

Nodal Prices – 16:00 on 22 Feb 2011

Obligation and Option FTR Payouts

Obligation and Option FTR Payouts

100

TR Payout (\$/MWh)

Auction design

- Responsibility of FTR service provider
- Standard design similar to wholesale electricity market
- Requirements:
 - FTRs offered based on estimate of grid
 - Designed to:
 - Maximise auction value
 - Maximise competition in auction
 - Minimise participation costs
 - Two options for determining quantity offered:
 - System operator
 - FTR service provider

Managing credit and default risk

- Clearing manager has management role initially
 - Must determine methodology for minimum level of security
- To participate parties must meet prudential requirements
- Trading limit would set maximum participant can bid
- Minimum level of security = total cost of FTRs purchased less forecast FTR value
 - Margin calls (weekly?) if necessary
- Security combined with security for wholesale market
 - FTR payouts can offset wholesale market security requirements
- Risk of default shared proportionately between all parties

FTR settlement

- Settlement amount/MW =
 - a) ½∑price differences for trading periods in FTR period; less
 - b) Any scaling of (a); less
 - c) Per MW FTR auction price
- Provision for "netting" approach, which would allow secondary trading
- Same timeframe as energy market settlement

Illustration of netting approach

Managing revenue adequacy

- Ability to pay out full price difference
- Theory: FTR grid = actual grid \rightarrow revenue adequacy
- Unexpected events may result in FTRs issued > actual grid
- Manage by:
 - Seeking FTR grid = actual grid;
 - Limiting quantity issued;
 - Access to rentals: HVDC rentals plus share of North Island rentals based on maximum inter-hub flows;
 - Accrue surplus rentals & auction revenue in "FTR account" for six months; and if necessary
 - Scaling
 - Attempt to "make whole" scaled FTRs from FTR account surplus over following year

Allocation of residual FTR revenue

- Residual FTR revenue = auction proceeds plus unallocated inter-hub rentals
- Possible competition issues with allocation to FTR auction participants
- Propose assessing options according to project objective
- Options should avoid distortions to efficient price signals
 inconsistent with statutory objective

Agenda

- Background
- Problem definition
- Proposals to address problems
- Design issues
- Cost-benefit analysis
- Next steps

Methodology and assumptions

- Top-down analysis
- Baseline scenario includes:
 - Authority has more focussed statutory objective
 - Development of hedge market
 - Physical and virtual SOE asset swaps
 - Approved transmission investment
 - Ability of lines companies to be retailers
 - More active demand-side participation
- Assumed that 67% of total LPR addressed by interisland FTR
- Discount rate of 8%

Costs

Development, implementation, set-up and operating costs, participation costs

Benefits

- Greater use of locational hedging (transfer)
- Lower search and transaction costs
- Improved retail and generator competition
- Improved price signals
- Option value provided by inter-island FTR
- Dynamic efficiency benefits (not estimated) innovation from enhanced competition, investment

Net present value (NPV)

Costs	Benefits	10-year NPV	30-year NPV
Low	High	\$40.3m	\$100.0m
High	High	\$24.9m	\$72.3m
Low	Low	\$13.7m	\$38.1m
High	Low	\$0.5m	\$14.3m

Qualitative evaluation of inter-island FTR

- Addresses main source of LPR in NZ
- Relatively simple
- Fits well with other industry developments
- Matches major energy trading points so promotes hedge market liquidity
- Avoids distortions to nodal price signals
- Flexible to changes in market design and conditions

Agenda

- Background
- Problem definition
- Proposals to address problems
- Design issues
- Cost-benefit analysis

Next steps

Indicative timeline

		Develop Code	Procure FTR Service Provider	Implementation		
2011 DIZIOI0IDI⊆I⊆IZIDIZ	Jan				Jan	
	Feb	Final proposal design and drafting			Feb	
	Mar	of Code amendments			Mar	
	Apr	Canaultation	Preparations for tender for FTR service provider		Apr	
	May	Consultation			May	
	Jun	Consider submissions			Jun	20
	Jul	Code provisions made			Jul	1
	Aug		Tender for FTR service provider		Aug	
	Sep		Selection of ETP convice provider		Sep	
	Oct		Selection of FTR service provider		Oct	
	Nov				Nov	
	Dec			ETP market development	Dec	
2012 > = = = :	Jan					
	Feb				Feb	20
	Mar					12
	Apr			Go Live	Apr	

Key dates

- Consultation (Code changes) closes 12 May 2011
- Targeting implementation prior to winter 2012

Questions?