Within-island Basis Risk

Prepared by Energy Link

for

The Electricity Authority

May 2012

Quality Assurance Information

Name	EA WIBR study May-12 v3.docx
File reference	E-EA-950
Issue Status	Issue 1
Issue Date	6 June 2011
Client	Energy Link Ltd

Definitions

The following terms, abbreviations and acronyms are used in this report. Node abbreviations are not included in this table.

Authority	Electricity Authority
CFD	Contract for differences (a type of swap contract)
Code	Electricity Industry Participation Code
em6	The market information system operated by the Energy Market Services division of Transpower
FTR	Financial transmission right
GIP	Grid injection point
GXP	Grid exit point
Hedge node	The node at which a party has a hedge contract
IIBR	Inter-island basis risk (a.k.a. inter-island LPR)
ICPD	Inter-cluster price difference
INPD	Inter-nodal price difference
LCE	Losses and constraints excess
LPR	Locational price risk
LPRTG	Locational Price Risk Technical Group
NI	North Island
OTC	Over-the-counter. Refers to the market for hedges in which hedging instruments are traded directly between the parties to the hedge (as opposed to being traded on an organised and regulated exchange such as a futures market).
PDS	Pre-dispatch Schedule
Physical node	The node at which a party has an exposure to the spot price by virtue of a contract to buy or sell electricity at the prevailing spot price
POCP	Planned Outage Coordination Process (see pocp.redspider.co.nz)
RMS	Root mean square – used to calculate the change in offered quantities by trading period, and the error in a simple demand forecast
SI	South Island
SPD	Scheduling, Pricing and Dispatch model
SWE	Spring washer effect
WIBR	Within-island basis risk (a.k.a. within-island LPR or intra-island LPR)
WITS	Wholesale Information and Trading System

Contents

Defin	NITIONS	II
1	INTRODUCTION	1
2	SUMMARY	2
3 3.1	HEDGING AND BASIS RISK How Basis Risk is Created	6 7
4 4.1 4.2 4.3 4.4 4.5	CLUSTER ANALYSIS CORRELATION DEFINED MATERIALITY AND THE CLUSTER THRESHOLD PREPARATION OF DATA CLUSTER ANALYSIS CLUSTER RESULTS	14 15 16
5 5.1 5.2 5.3 5.4	ANALYSIS OF WIBR DRIVERS WIBR DRIVERS RESULTS Summary of Observations Scoring the WIBR Drivers	22 42
6 6.1	DISCUSSION Dynamic Effects Associated with Time of Day	55 58
7 7.1	CONCLUSIONS Further Work	60 61
8 8.1 8.2 8.3	Appendix 1 – Nodes and Clusters Cluster Listings Clusters Formed with Correlation = 0.7 Clusters Formed with Correlation = 0.8	65
8.4 8.5 8.6	CLUSTERS FORMED WITH CORRELATION = 0.9 CLUSTERS FORMED WITH CORRELATION = 0.95 CLUSTERS FORMED WITH CORRELATION = 0.99	67 68

Figures

Figure 1 – Frequency of Price Spreads and Demand Uncertainty by Period	5
Figure 2 – Simple Grid and Electricity Market	7
Figure 3 – Load, Power Flow and Location Factor	10
Figure 4 – Spot Prices and Average Rates	11
Figure 5 – Clustering of Four Nodes	17
Figure 6 – Larger Clusters Obtained with Correlation = 0.8	18
Figure 7 – Larger Clusters Obtained with Correlation = 0.9	18
Figure 8 – Larger Clusters Obtained with Correlation = 0.99	19
Figure 9 – Overall Frequency of Price Spreads	23
Figure 10 – Spreads over Time	24
Figure 11 – Spreads by Time of Year	26
Figure 12 – Price Spreads by HVDC Flow	27
Figure 13 – Price Spreads by Demand	28
Figure 14 – Price Spreads by Change in Demand	29
Figure 15 – Price Spreads by Circuit Outages in MW	30
Figure 16 – Price Spreads by Change in Circuit Outages	31
Figure 17 – High Price Spread Events by Group Outage in MW	32
Figure 18 – High Price Spread Events by Grid Overload	33
Figure 19 – High Price Events by Generation Outage in MW	34
Figure 20 – High Price Spread Events by Change in Generation Outage in MW	35
Figure 21 – High Price Spread Events by Change in Offers	36
Figure 22 – High Price Spread Events by Maximum Offer Price	37
Figure 23 – High Price Spread Events by FIR +SIR Price	38
Figure 24 – High Price Spread Events by Capacity Margin	39
Figure 25 – High Price Spread Events by Change in Capacity Margin	40
Figure 26 – High Price Spreads by Trading Period	41
Figure 27 – Average HVDC Flow by Trading Period	47
Figure 28 – Average Demand and Capacity Margin by Trading Period	
Figure 29 – Average Winter Demand and by Trading Period	49
Figure 30 – Average Summer Demand by Trading Period	50
Figure 31 – Average Price Spread in Winter	51
Figure 32 - Average Price Spread in Summer	52
Figure 33 – Average Circuit Outage by Trading Period	53
Figure 34 – Average Generation Outage by Trading Period	54
Figure 35 – Change in Average Demand by Trading Period	55
Figure 36 – Reserves Prices by HVDC Flow	57
Figure 37 - Weekday & Other Day Demand and Price Spreads by Trading Period	58
Figure 38 – Demand Uncertainty by Trading Period	59

Tables

Table 1 – Hedge Parameters	. 10
Table 2 – Impact of One Price Spike on Correlation for a 100 MW Load	
Table 3 – NI WIBR Scores	45
Table 4 – SI WIBR Scores	45
Table 5 – Average Score across both Islands	.46
Table 6 – Correlations with Frequency by Trading Period	.54
Table 7 – Summary of WIBR Drivers	56

1 Introduction

The Electricity Authority (the Authority) amended the Electricity Industry Participation Code (the Code), with effect from October 2011, to allow for the introduction of interisland financial transmission rights (FTRs). An RFP was issued in August 2011 for the role of FTR Manager and Energy Market Services, a division of Transpower, was appointed to this role in April 2012. The inter-island FTRs will hedge the price difference between two key nodes, Otahuhu in the North Island (NI) and Benmore in the South Island (SI), and the FTRs will be funded from the losses and constraints excess (LCE). The FTRs will assist in managing the financial risks associated with inter-island basis risk¹ (IIBR, a.k.a. inter-island locational price risk or LPR).

The Authority is now considering options to develop a solution within the NI and SI for the management of within-island basis risk (WIBR, a.k.a. intra-island LPR). Energy Link was engaged late in 2011 to advise the Locational Price Risk Technical Group (LPRTG) of further analysis required to assess the need for LPR hedge instruments on a within-island basis.

Energy Link was then engaged in January 2012 to analyse WIBR using a three phased approach:

1. Phase 1: Identify Clusters

Determine a set of regions of the grid (or 'clusters') within which basis risk is below a specified threshold, and between which basis risk is above the threshold. In essence, a cluster represents a group of nodes between which basis risk is sufficiently low that no WIBR hedging instrument is required within the cluster. WIBR hedging instruments could, however, be considered for use in hedging between clusters.

2. Phase 2: Process WIBR Drivers

Based on the clusters defined in Phase 1, analyse market data to determine the underlying factors (the 'WIBR drivers') that may cause basis risk between clusters. Process the WIBR driver data and determine relationships between inter-cluster price differences (ICPDs) and each driver.

3. Phase 3: Projections

Discuss how each driver will change in the foreseeable future and hence draw conclusions about how WIBR may evolve over time.

There are three main outputs from this study. The first is a number of cluster sets, based on half hourly prices over the five year period from 1-Jan-07 through to 31-Dec-11. Each cluster set is derived using a specified threshold of correlation between prices at nodes within each cluster. For example, a threshold correlation of 0.9 gives a set of clusters in each island within which the correlation between half hourly prices over each month in the study period, at each and every node within the cluster, remains at or above 0.9. Clusters were derived using correlation thresholds of 0.7, 0.8, 0.9, 0.95 and 0.99.

¹ Basis risk is a generic term which refers to the risk that changes in two elements of a hedging strategy do not offset each other perfectly.

The second output is a list of the key drivers of basis risk in each island, between the clusters derived with correlation threshold of 0.9.

The third output is a discussion of how the WIBR drivers, and thus WIBR itself, may evolve over the coming years and decades.

This report includes an extensive section 3 which establishes context for the study and describes how various key parameters were selected. Readers who are already fully familiar with issues of risk management and hedging in the electricity market may wish to skip this section and go straight to section 4.

Section 4 gives the results of the cluster analysis and section 5 gives the results of WIBR drivers analysis, primarily through a series of graphs of the frequency and magnitude of high price spread events plotted across the range of each WIBR driver.

Section 6 summarises the results of the WIBR analysis and the implications for WIBR and hedging into the foreseeable future.

2 Summary

An unhedged party can choose whether to hedge or not, but if they do hedge then they are still exposed to some degree of basis risk if their hedge node is not also their physical node.

When hedging at a node distant on the grid, the hedge quantity can be adjusted by the expected (forecast) location factor of the physical node relative to the hedge node, and with this adjustment, the hedge will perform well over a wide range of market conditions as long as the actual location factor remains relatively close to the forecast location factor. Events such as spring washer effect (SWE) that create large and highly unpredictable inter-nodal price differences (INPDs), however, may move location factors far beyond expected values, creating the potential for large, unpredictable and adverse movements in hedge payout.

Nevertheless, there are 'clusters' of nodes on the grid within which the correlation between prices is high (on a historical basis), which means that hedging within a cluster has a good chance of minimising the impact of basis risk.

In the first phase of the study, data from 1-Jun-07 to 31-Dec-11 was processed and tested so that clusters could be identified at a number of levels of correlation. In the second phase of the study we selected the clusters within which prices correlated to the tune of at least 0.9 in each month, which gave enough clusters to facilitate meaningful analysis.

For each half hour in the study period in each island, the average price was calculated for each cluster, and then the spread of cluster prices was calculated for each half hour.

Data was also processed by half hour for each of a number of candidate WIBR drivers, selected from a range of parameters which either cause, or are associated with, changes in dispatch and pricing over time. The processed WIBR drivers included:

• total island demand;

- total capacity of circuits in outage;
- total loading on the grid in the island;
- total MW of generation having an outage within the island;
- total power transfer on the HVDC link, with northward flow defined as positive;
- change in offers during the half hour;
- rates of change of the parameters described above;
- time of day, represented by trading period number;
- time of year;
- capacity margin, equal to the total quantity offered for the half hour less the total demand;
- maximum offer price;
- the total of the SIR and FIR price in the relevant island

The study focused on trading periods in which the price spread exceeded 50% of the average cluster price, thus ensuring that the studied periods were all influenced by a binding constraint of some sort and exhibited significant basis risk. In the NI there were 4,514 (5.6%) periods included, and 2,793 (3.5%) in the SI, all of which were classified as 'high price spread' events.

The frequency and magnitude of the half hourly spreads for all high price spread events was then plotted and scored against each WIBR driver, with the resulting scores shown in the following tables. A score above one indicates a degree of association between the driver and either frequency or magnitude.

NI Driver	Frequency Score	Magnitude Score
HVDC Transfer	11.3	1.9
Demand	10.6	1.0
Time of year (month)	7.5	2.2
Circuit Outage	7.5	2.9
Capacity Margin	7.0	0.5
FIR + SIR Price	5.0	2.2
Grid Overload	4.5	0.5
Group Circuit Outage	3.4	1.0
Maximum Offer Price	2.9	0.4
Trading Period	2.8	2.3
Circuit Outage Change	1.6	2.7
Capacity Margin Change	1.0	0.6
Demand Change	0.9	0.4
Offers Change	0.6	0.7
Generation Outage	0.4	9.6
Generation Outage Change	0.4	9.9

SI Driver	Frequency Score	Magnitude Score
Circuit Outage Change	33.3	3.9
Circuit Outage	25.6	5.6
Group Circuit Outage	19.4	7.4
Generation Outage	15.9	8.8
Capacity Margin	13.4	0.3
Time of year (month)	10.0	3.8
HVDC Transfer	7.1	2.6
Trading Period	6.5	2.5
Generation Outage Change	4.3	5.4
Grid Overload	2.9	0.3
FIR + SIR Price	1.3	0.3
Capacity Margin Change	1.0	0.9
Offers Change	0.2	0.5
Demand Change	0.2	1.2
Maximum Offer Price	0.2	0.5
Demand	0.1	0.3

In both islands, the magnitude of high price spread events is considerably less likely than their frequency to be strongly associated with any particular WIBR driver, suggesting that high price spread events, when they occur, have a significant random component in respect of magnitude.

The tables show, however, that a number of WIBR drivers are strongly associated with high price spread events.

When the frequency of high price spread events is plotted against trading period, then a distinct pattern is evident in both islands: the frequency increases sharply in periods 15 and 16 (7:00 am to 8:00 am) to peak in a period shortly after, then falls off through the rest of day to period 43 when it falls sharply again to its overnight level. This effect was investigated in some detail, resulting in the development of a simple method of forecasting demand by trading period using the demand from the same period a week earlier. Figure 1 shows the frequency of high price spread events in the NI by trading period, along with the error in the simple demand forecast².

² Labeled 'NI RMS Error in Demand Forecast'.

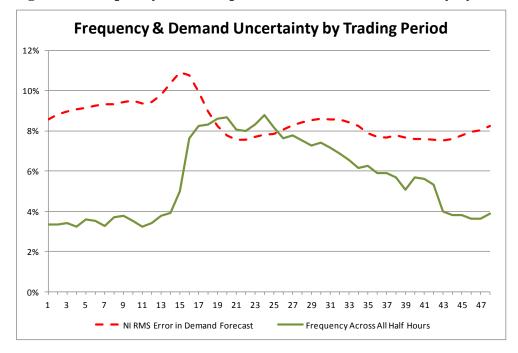


Figure 1 – Frequency of Price Spreads and Demand Uncertainty by Period

It was postulated that leading into the morning demand peak, a number of factors create uncertainty for market participants including rapidly increasing and uncertain demand, along with a rapidly narrowing capacity margin, commencement of the new day's transmission outages, and in the SI, generators beginning planned outages. As the day progresses, it is possible that generators are able to fine tune their offers to reduce the occurrence of any constraints that appear leading up to and during the morning peak which, when combined with lower uncertainty over demand, would explain why the frequency of high price spread events consistently falls off during the day.

Of the sixteen WIBR drivers initially analysed, only two drivers failed to show some degree of positive association with either the frequency or magnitude of high price spread events. The distinct pattern of frequency by trading period also led us to add demand uncertainty as a key WIBR driver.

Projecting forward, the only drivers that might change significantly in future are grid capacity (via upgrades of the AC grid), reserves prices and HVDC transfers (once Pole 3 is commissioned). However, HVDC transfers are also strongly correlated with the frequency high price spread events across the day, so in respect of these three drivers we can only conclude that grid upgrades are likely to reduce WIBR (or at least until demand growth or the building of new generation 'uses up' the new capacity) but to a relatively small extent.

As to the other drivers that are positively associated with high price spread events, some will increase (demand, for example, is forecast to continue growing) and the rest are unlikely to move in a direction that will reduce WIBR (generation outages, circuit outages, capacity margin, wet and dry years).

Taken overall, there are some drivers that will tend to reduce WIBR in the foreseeable future, but on balance there are a greater number of stronger drivers that will tend to

keep WIBR the same or to increase it in future. We conclude that WIBR will continue at similar levels into the foreseeable future, although the associations are likely to change over time as grid upgrades are completed.

However, there is a distinct pattern of frequency of high price spread events across the day, which appears to be linked to uncertainty in demand combined with the time of day at which circuit and generation outages commence, and potentially aggravated by the growing quantity of wind generation. It is therefore possible that WIBR will reduce 'at source' with the introduction of new forecast schedules at the end of this month, by providing the market with better forecast information, and particularly concerning the potential impacts of demand: if this occurs then the market will have more time to take action to reduce the occurrence of constraints. The impact of the new schedules can be assessed, in part, by any changes observed in the frequency of high price spread events across the day.

The Authority is currently pursuing work on improving the price formation process, and it may be that certain improvements could also reduce WIBR at source: for example, changing the way that constraints are modelled in SPD. We recommend the scope of this work be reviewed to determine whether or not it should include a measureable reduction of WIBR as an explicit goal.

3 Hedging and Basis Risk

This section is devoted to developing the context for WIBR, hedging strategy, and risk management in the electricity market. The simple examples used in this section illustrate how basis risk arises, why it is a key issue for market participants, and why certain choices were made in the course of the study.

The Authority defines basis risk (LPR) "the risk associated with unpredictable variations in the difference between spot prices for electricity at two nodes"³ and states that "hedge contracts may not provide effective protection against this type of [basis] risk."⁴

It could be argued that a completely unhedged party is exposed to basis risk at their physical node⁵ if a large INPD occurs (perhaps as a result of SWE) across an island, resulting in a very high or low⁶ price at their physical node. However, such a party has presumably made a decision in the past not to be hedged at all, and so at least in terms of outcome, the risk of SWE is indistinguishable from the risk that prices will be high at all nodes in an island⁷. For this reason, basis risk is only relevant in the context of hedging strategy and, in particular, in the consideration of how the effectiveness of a hedging strategy is influenced by basis risk.

There are five generic hedging situations which include some element of WIBR:

1. generator sells at spot prices, and hedges at a distant node within the island;

³ Summary of Locational Price Risk Proposal, Explanatory Paper, Interim Report, 19 April 2011.

⁴ See <u>http://www.ea.govt.nz/our-work/programmes/priority-projects/locational-hedges/</u>

⁵ The node at which they buy or sell electricity at spot prices.

⁶ High price is of concern to a retailer or large consumer, low price is of concern to a generator.

⁷ A SWE could produce much higher prices than a dry year, for example, but a dry year tends to last much longer, so the total impact of both could be similar.

- 2. retailer purchases spot prices to supply customers at a physical node, and hedges at a distant node within the island;
- 3. gentailer⁸ sells at spot price at one physical node and purchases at spot price at a distant physical node within the island, and sells to customers at that node;
- 4. large consumer purchases at spot prices at a physical node, and hedges at a distant node with the island;
- 5. financial intermediary (such as a bank) buys or sells OTC hedges in the market at one node, creating an exposure to spot prices, and hedges the spot price risk at a distant node within the island (e.g. at one of the nodes at which futures contracts are available).

These five generic situations are described more fully in our report on the application of inter-island FTRs (refer to *Application of FTRs to Hedging Strategy, Part 1: Summary Report*, Energy Link, September 2010.⁹).

3.1 How Basis Risk is Created

In the following discussion, we refer to the simple grid and electricity market shown in Figure 2 and use this to illustrate how basis risk arises when parties attempt to hedge their spot price exposure with one or more hedges at one or more nodes located at a distance across the grid, but within the same island. The nodes are indicated in the figure by thick vertical lines.

Figure 2 shows a generator H at node 1, supplying energy across two identical transmission lines to node 2 at which there is a large customer bases and three more generators: generator B is a base-load generator, generator F is a firming¹⁰ generator and generator P is a peaking generator. Under normal circumstances, all load is supplied by generators B and H.

Figure 2 – Simple Grid and Electricity Market

Losses are incurred on the transmission lines, and as a result the price at node 2 is higher than the price at node 1. In simple terms, and as long as the two lines run below

⁸ Generator-retailer.

⁹ <u>http://www.ea.govt.nz/document/11910/download/our-work/programmes/priority-projects/locational-hedges/ftr-development/</u>

¹⁰ A firming generator fills the gap between base-load and peaking capacity.

their rated capacity, the price S_2 at node 2 is equal to the price S_1 at node 1 multiplied by one plus the marginal losses on the lines:

$$S_2 = S_1 \times (1 + 2Rp)$$

where R is the combined resistance¹¹ of the two lines and p is the total power flowing in the lines¹². The price difference across the lines is proportional to the power flowing between nodes 1 and 2. The location factor of node 2 relative to node 1 can be defined as:

$$\ell_{21} = \frac{S_2}{S_1} = 1 + 2Rp$$

and the location factor of node 1 relative to node 2 is:

$$\ell_{12} = \frac{S_1}{S_2} = \frac{1}{1 + 2Rp}$$

However, when the two lines reach their rated capacity, then the simple relationships above no longer hold, and the price difference across the lines is determined not by marginal losses, but by the difference in the prices of offers that are dispatched at the two nodes. For example, if one of the lines has an outage and H's output is reduced, then B may not be able to supply all of the load at node 2, resulting in the dispatch of F and possibly also P. In this case the price at node 1 would be the offer price of H and the price at node 2 would be the offer price of node F or, if P was also dispatched, the offer price of P.

Let us suppose that a customer at node 2 has a constant load of 20 MW and they hedge 100% of the associated spot price risk hedge with generator H. There are two ways this can achieved:

- Hedge#1: hedge for a little more than 20 MW at node 1; or
- Hedge#2: hedge for 20 MW at node 2.

We will assume that the hedges are industry-standard contracts for differences (CFD).

Hedge#2

Hedge#2 is the natural choice, other things being equal, for the customer at node 2 simply because it eliminates basis risk. The total cost for the consumer with Hedge#2 in a trading period is given by

$$Cost = q_2 S_2 + Q_2 (F_2 - S_2)$$

where q_2 is the customer's load (20 MW in this example), Q_2 is the hedge quantity for Hedge#2 and F_2 is the strike (hedge) price for Hedge#2.

¹¹ Expressed as the per unit resistance divided by 100.

¹² This formula does not hold true for lines in a loop in a grid.

This can be rearranged to give

 $Cost = Q_2F_2 + q_2S_2 - Q_2S_2$

The second formula shows that when 100% hedged so that $Q_2 = q_2$, then the residual risk associated with Hedge#2 is nil¹³. However the equivalent revenue formula for generator H (ignoring costs of generation) is given by

$$Revenue = q_1 S_1 + Q_2 (F_2 - S_2)$$

which rearranges to give

 $Revenue = Q_2F_2 + q_1S_1 - Q_2S_2$

If we focus only on that amount of H's generation that matches Hedge#2 (which is less than the total output of generator H in this example) then we can see that even when 100% hedged, generator H retains residual exposure to the difference between S_1 and S_2 .

Hedge#1

Under Hedge#1 the customer has trading period cost of

$$Cost = q_2 S_2 + Q_1 (F_1 - S_1)$$

which rearranges to give

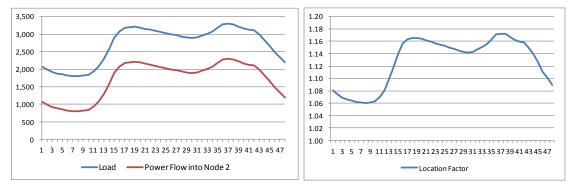
$$Cost = Q_1 F_1 + q_2 S_2 - Q_1 S_1$$

Under this hedge the customer now has residual exposure to the difference between S_1 and S_2 which is to say that there hedging strategy has basis risk, in addition to residual volume risk.

To ensure the customer has 100% hedge cover with Hedge#1, it is essential to adjust the hedge quantity by the location factor ℓ_{21} defined above¹⁴. In other words, under Hedge#1 the customer would select a hedge quantity equal to the expected value of ℓ_{21} over the term of the hedge¹⁵. This adjustment can be thought of as a way of 'amplifying' the payouts on the hedge at node 1 to match the larger movements in the spot price at node 2 where the customer has the spot exposure.

Under Hedge#1, of course, generator H does not have any exposure to the difference between S₁ and S₂, but the hedge quantity is not for 20 MW, but for 20 MW multiplied by the expected location factor ℓ_{21} .

¹³ In practice, no hedge ever consistently achieves 100% hedge, so there is always some residual "volume risk" arising from an exposure to the spot price at the margin.


¹⁴ This is easy to show with a little bit of algebra.

¹⁵ A real hedge might be made up of a number of time zones, each with their own price and quantity, so the location factor adjustment would be made separately for each zone.

The above is perhaps better illustrated by a worked example, which covers one day, and in which the total demand at node 2 varies between 1,800 MW and 3,300 MW. The offers of generator H vary between \$40/MWh and \$130/MWh, generator B offers 1,000 MW at \$0.01/MWh, generator F offers 500 MW at \$300/MWh, and generator P offers 200 MW at \$5,000/MWh.

The capacity of the lines connecting the two nodes is 1,750 MW each, so generators B and H can normally supply all the load at node 2 between them.

Figure 3 shows the total load at node 1, the power flowing into node 2 and the location factor ℓ_{21} , the latter varying from 1.06 to 1.17 over the day (which is deliberately set up to be quite a large diurnal variation).

Figure 3 – Load, Power Flow and Location Factor

An observation at this point is that the correlation between the prices at the two nodes is almost exactly equal to one, the importance of which will become apparent in section 4 when we define the cluster sets.

With the appropriate location factor adjustment on Hedge#1, Table 1 shows the two hedge quantities and strike prices, along with the load and generation actually hedged and the average price expected by the customer at node 2 (taking into account both the spot purchase and hedge settlements). The table shows, that with the location factor adjustment correctly applied in Hedge#1, and assuming the factor turns out to be equal to the expected actual location factor, the two hedging strategies achieve the same outcome.

Hedge	Node	Hedge Quantity (MW)	Strike Price (\$/MWh)	Generation Hedged	Load Hedged	Price Expected at Node 2
Hedge#1	1	22.84	80.00	22.84	20.00	91.34
Hedge#2	2	20.00	91.34	22.84	20.00	91.34

 Table 1 – Hedge Parameters

The choice of location factor (1.142) for this example was simple: it is just the average of S_2 for the day by the average of S_1 for the day. In a real hedging situation the location factor adjustment is always made using an expected (forecast) location factor,

which should allow for changes in power flows that are expected to occur with changes in demand, new generation build and transmission upgrades.

Nevertheless, the point here is that by making the appropriate location factor adjustment for Hedge#1, and as long as the actual location factors turn out to be approximately equal to the expected (forecast) location factors, a perfectly adequate hedging strategy can be formulated where the physical and hedge nodes are not the same (but within the same island). Figure 4 shows that the average buy and sell rates achieved by the customer and generator H, respectively, vary much less than the spot prices, despite large changes in price over the day and significant movements in location factors.

Figure 4 – Spot Prices and Average Rates

Now we look at what happens when larger price separations occur within an island, which can happen in one of two ways:

- 1. the prices at all nodes increase, as they do in a dry year for example, in which case the INPDs increase in proportion; or
- 2. a transmission constraint binds 16 , often resulting in SWE.

In the first case, we can test the impact of this using our simple model, by increasing the offer prices of generators H and F by a factor of five, for example, which gives a range of prices at node 2 from \$212/MWh to \$514/MWh, but with the average achieved rate including hedges remaining at \$91.34/MWh.

In a trading period when the location factor is equal to 1.142, the average purchase rate under Hedge#1 is still \$91.34/MWh. With the location factor at its maximum value of 1.172 the average rate is higher at \$111/MWh, and at the minimum location factor of 1.061 the average rate is lower at \$75.11/MWh. The higher spot prices in this example

¹⁶ There could be a line that constrains, or it could be an equation constraint. An equation constraint limits the combined flow on two or more lines.

amplify the small deviations from the expected average rate. That said, the deviation from \$91.34/MWh is not great (+22%, -18%) and as long as the location factor does not move significantly from forecast, then Hedge#1 still achieves the expected costs for the customer over the day. Given the large movement in location factor across the day in this example, the customer could improve their hedge by having a different strike price and hedge quantity for day and night, for example.

SWE and other transmission constraints are associated with the much larger INPDs that can and sometimes do occur, and consequently much greater movements of location factor away from expected values. The simple model does not allow us to capture a full SWE because it does not include a suitable loop, but it does allow one line to be taken out of service. For example, if one line is out of service when demand is at its maximum value of just under 3,300 MW, then generators F and P are dispatched and the price at node 2 reaches \$5,000/MWh and remains at \$130/MWh at node 1. The resulting location factor ℓ_{21} is 38.5 and the additional cost to the customer in this one trading period is just under \$49,000 which is equivalent to an additional 1.1 days of electricity supply at the hedged rate of \$91.34/MWh.

Even with both lines in, if generator B has an outage then generator F is dispatched in this period, resulting in a price of \$300/MWh at node 2 in this example, or an additional cost of just under \$1,500.

Movements in location factor of this magnitude are difficult to predict, both in terms of their frequency and magnitude, and are therefore difficult to manage using a simple location factor adjustment.

In the above examples, outages created basis risk, but by implication, the choice of offers is also potentially a key WIBR driver: for example, if generator P chose to offer at \$10,000/MWh then the price separation with one line out would be correspondingly greater than in our example.

Our examples also used a trading period when demand was at its highest, at which time the loading on the grid is correspondingly higher and the loss of transmission or generation capacity is therefore more likely to create basis risk. Thus we can see that transmission and generation outages, offer prices and demand are all implicated and may turn out to be significant WIBR drivers.

4 Cluster Analysis

The simple model used in section 3.1 above features only two nodes, whereas the real grid has around 250 GIPs and GXPs at which spot prices are published. For most nodes on the grid, there is a set of nodes whose prices correlate so well with that of node A that basis risk is immaterial if a spot price exposure at A is hedged at any node in the set. We have called these sets of closely correlated nodes clusters (or WIBR clusters)¹⁷.

¹⁷ The use of the term 'region' can be confusing because it conjures up images of nodes in a geographical region, whereas the nodes in a cluster are clustered in the sense of being electrically well connected, which could see a cluster spread out across large tracts of an island along one or more transmission long lines.

Once WIBR clusters are known, then anyone should be able to hedge with confidence at any node in the same cluster as their spot price exposure. This also simplifies the issue of assessing and managing WIBR because WIBR can be isolated between a relatively small number of clusters (instead of between a much larger number of nodes). For phase two of our study, the smaller number of clusters greatly simplified the analysis of WIBR drivers.

The first phase of the study first required that a test be developed for membership of any given node within a WIBR cluster. In principle, a cluster is made of nodes whose prices correlate above a given threshold with the prices at all other nodes in the cluster. However, this relatively simple definition of a cluster is complicated by two factors: firstly, one must define what is meant by 'correlation'; secondly, one must define the degree of correlation that is considered material in the context of hedging.

4.1 Correlation Defined

A key consideration in defining correlation was to use a correlation metric that is both well known, well understood and easy to apply, the obvious candidate being the correlation used in the CORREL function in the Excel spreadsheet program. CORREL uses the Pearson's product-moment coefficient in its sample form¹⁸, which estimates the correlation coefficient of an entire population.

Pearson's coefficient is a widely used statistic that calculates the degree of correlation between two variables, and is equal to one when the two variables are linearly related. This explains why the correlation (calculated in Excel) between S_1 and S_2 in section equals one when the two transmission lines are unconstrained: the two prices are related by a simple formula which is linear in the power flowing between the nodes. While this high level of correlation persists, even when prices rise in a dry year, then the hedging strategy produces a stable average price across each day.

But when large price separations occur then the correlation falls away rapidly. For example, with node 2 at \$300/MWh and node 1 at \$130/MWh for one trading period in the day, the correlation is 0.90. But with node 2 at \$5,000/MWh and node 1 at \$130/MWh for one trading period in the day, the correlation falls to 0.23 for the day.

This all suggests that the Pearson's coefficient may perform well as a test for nodes that should be within the same cluster, for example we might define clusters by the rule that "all nodes should correlate to at least 0.9 with each and every node in the cluster at all times".

However, most nodes in the grid are connected to more than one other node, and the simple price relationships given in section 3.1 do not hold in general when there are loops in a grid. In the absence of binding transmission constraints, the price at any given node is a linear function of the flow in a number of lines (which in turn is influenced by generation and demand), so the price difference between two distant nodes is no longer a linear function of one variable. A potentially complicating factor is that SPD models losses in each line using three linear loss segments, resulting in stepped price differences between nodes (the HVDC link has six loss segments).

¹⁸ For a concise description see <u>http://en.wikipedia.org/wiki/Pearson_product-</u> moment_correlation_coefficient.

While the issue of SPD's loss modelling is second order and likely to be immaterial, the issue of how abnormal power flows change correlations between prices at distant nodes is significant. However, a number of tests of the price differences between various pairs of nodes does suggest that the Pearson's coefficient (which is calculated in the CORREL function in Excel) is a reasonably good measure of correlation for defining clusters.

4.2 Materiality and the Cluster Threshold

Ideally, the criterion for a node to be a member of a cluster would be that it correlates with all other nodes in the cluster to at least some minimum value, so that any party subsequently hedging within the cluster could be confident that basis risk would be immaterial. However, the single value could be too high for some hedgers (more clusters, limiting nodes for hedging within a cluster) or too small (exposing the hedger to more risk than desired even when hedging within a cluster).

Each hedger has their own propensity to take risk and their own particular set of circumstances, so what amounts to material basis risk for one may be immaterial for another. For example, some larger consumers are 100% exposed to the spot price, while others prefer to be as close to 100% hedged as possible.

For the purposes of the study, and as a guide to readers, one month was used as the correlation period. For a node to be included in a cluster, it must correlate with all other nodes in the cluster to at least the chosen correlation test value, month by month from Jan-07 to Dec-11. A month was chosen for the correlation test period (as opposed to, for example, one year or five years) because one month is the length of the billing cycle.

Table 2 shows the impact of one inter-nodal price spike (between the physical and hedge nodes) out of the 1,440 trading periods in a month of 30 days, with each day having a typical daily profile¹⁹, for a load of 100 MW and a hedge with a strike price of \$74/MWh. The rightmost column shows the percentage increase in the monthly cost resulting from the spike. This load has a monthly electricity bill of just over \$5.3 million.

Correlation	Spike	Monthly Increase	Monthly Increase
0.99	\$100/MWh	\$5,000	0.09%
0.95	\$230/MWh	\$11,500	0.22%
0.90	\$338/MWh	\$16,900	0.32%
0.85	\$431/MWh	\$21,550	0.40%
0.80	\$520/MWh	\$26,000	0.49%
0.75	\$610/MWh	\$30,500	0.57%
0.70	\$704/MWh	\$35,200	0.66%
0.60	\$914/MWh	\$45,700	0.86%
0.50	\$1,175/MWh	\$58,750	1.10%
0.40	\$1,535/MWh	\$76,750	1.44%
0.30	\$2,090/MWh	\$104,500	1.96%

Table 2 – Impact of One Price Spike on Correlation for a 100 MW Load

¹⁹ Taken from the Haywards node.

Correlation	Spike	Monthly Increase	Monthly Increase
0.20	\$3,110/MWh	\$155,500	2.92%
0.10	\$5,695/MWh	\$284,750	5.34%

When transmission constraints occur, they can create large INPDs for as little as just one trading period, but they can also last for several hours in a day, and sometimes on more than one day in a month. For example, the table shows that a \$100/MWh price spike occurring once in a month maintains a correlation of 0.99 while a spike about 12 times as large (\$1,175/MW) reduces the correlation to 0.5. However, if the same \$100/MWh spike occurred twelve times during the month, then the monthly increase in cost would be twelve times as large, or 1.1%, but the correlation would only fall to 0.89 (this is not shown in the table). Furthermore, if spikes can occur in one month then they can occur in another, which leads to the conclusion that the relationship between correlation and materiality is influenced by the number of large spikes in INPD as well as by the magnitude of each spike.

An increase in cost of 1.1% in one month in our example above is 0.09% over a year, which is a tiny percentage of the annual electricity bill. However, the absolute increase of almost \$60,000 is still a substantial sum. So as well as considering the relative increase in costs due to spikes in INPDs, risk averse hedgers may also consider the absolute amounts potentially at risk.

In terms of this study, two conclusions were reached early on:

- there can be no choice clusters that will satisfy all potential hedgers for use in their respective hedging applications; and
- the possibility of multiple spikes means that risk averse hedgers are likely to prefer hedge nodes which are highly correlated with their physical nodes.

Another key consideration when it comes to forming clusters is whether nodes that are major centres of load and generation are included within one or more clusters: to be consistent with the work on FTRs to date, we refer to such nodes as hubs. If the prices at two hubs correlate to a high degree anyway, then they will be in the same cluster unless a very high threshold correlation value is chosen. But if they correlate to a lesser degree then it may be advantageous to use a threshold correlation value which allows the two hubs to be in different clusters for the purpose of assessing and designing instruments which hedge WIBR.

4.3 Preparation of Data

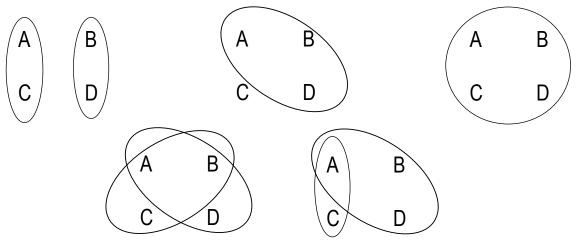
It was originally planned to average prices at substations by half hour in order to reduce the total number of nodes to 108 in the NI and 67 in the SI, where we defined a substation as a collection of adjacent nodes which all start with the same three letters, for example the Stratford substation, SFD, includes SFD2201, SFD1101 and SFD0331. However, this approach soon fell over due to constraints that occur within substations, Roxburgh being a prime example: the transformer ROX_T10 links the 110 kV and 220 kV buses but has capacity of only 50 MW, which caused it to constrain during the study period and cause price separations between the two buses.

So early on in the study the decision was made to process the node data by voltage, to give "voltage nodes". In most cases this meant processing nodal data, but in a few cases prices were averaged across two nodes, for example at OTA there are two nodes at 220 kV, so the voltage node OTA220 is the average of OTA2201 and OTA2202. The full list of voltage nodes is included in Appendix 1.

There are also a significant number of disconnected node situations in the study period, where the price at the disconnected node is set to zero. For example, the substation HWB consists of HWB2201, HWB0331, HWB0332 and HWB1101, and the first three of these nodes have prices published in the market. The prices at these three nodes normally correlate to a very high degree, but on 8-Apr-11 from trading period 14 to 35 inclusive, HWB2201 was disconnected from the grid and, as a result, had a price of zero. Should HWB2201 be bumped out of the same cluster as the other HWB nodes just because of this one day? Do disconnected nodes even constitute basis risk? Well, the short answer is yes, but in reality a disconnected node constitutes much less risk than the potential for an INPD of many hundreds or even thousands of dollars, so it was decided to ignore disconnected nodes. Thus clusters can include nodes that were disconnected during the study period.

Similarly, there were a handful of days when all prices were zero in an island, and so these days were also eliminated along with disconnected nodes.

4.4 Cluster Analysis


In an island with N nodes, there are N(N - 1)/2 node pairs, and there are 146 voltage nodes in the NI and 87 voltage nodes in the SI. For each of the 60 months in the study period, the correlation between the half hourly prices at each pair of nodes was calculated, resulting in 10,585 correlation values in the NI and 3,741 in the SI for each month.

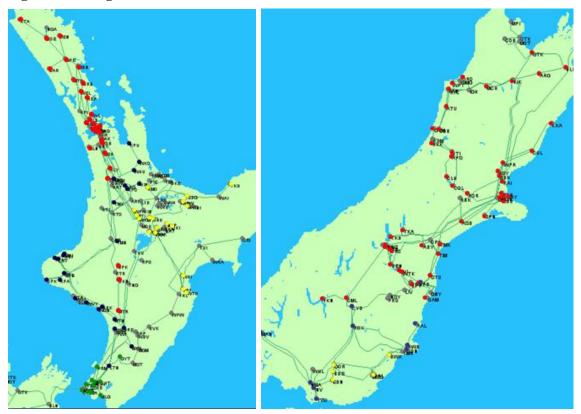
The monthly correlation values were then tested for each node against all other nodes in a potential cluster: if the minimum correlation over the 60 months is greater than or equal to the chosen threshold correlation value, then the pair of nodes is in the same cluster²⁰. This process is repeated until all nodes are allocated to one or more clusters, bearing in mind that it is possible for a node to be in a cluster all on its own.

Intuitively, one might expect clusters to always be distinct from each other, which is to say that any particular node can only be in one cluster at a time. But in reality clusters can and do overlap. For example, four nodes A, B, C and D are shown in Figure 5 in five different configurations of clusters (a cluster is indicated by an ellipse), all of which are possible: the lower two cluster configurations feature overlapping clusters.

 $^{^{20}}$ So it takes only one month to be below the threshold correlation value for the nodes to be in different clusters.

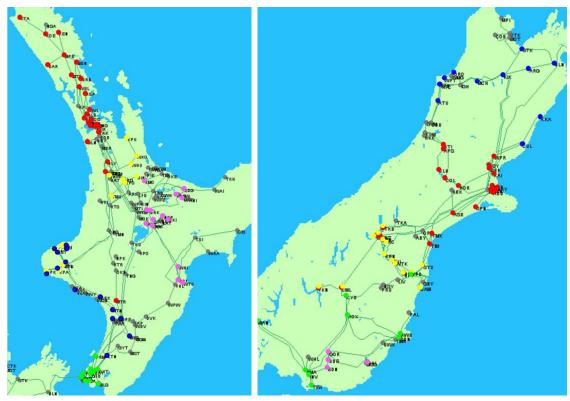
The method developed to form clusters first required that all nodes in an island be sorted alphabetically: A, B, C, D in the figure above. The second node B in the list is tested for membership of the same cluster as the first node A, then the third node C is tested for membership of the same node as the first node A, and so on to the end of the list. This gives a cluster which contains the first node in the alphabetic list of all nodes in the island.

On the second pass the list is modified by placing the second node at the top of the list so the order is B, A, C, D and the cluster testing process is repeated as above. Then the third node is placed at the top of the sorted list to give C, A, B, D and the cluster testing processed repeated, and so on.


This continues until each and every node has been tested at the top of the sorted list of nodes. The process produces many duplicate clusters, and clusters which are subsets of larger clusters, leaving the set of unique clusters for the island and the threshold correlation value used in the clustering process.

4.5 Cluster Results

Arguably, some hedgers may be content with quite low correlation thresholds, but in this study only values down to 0.7 were used to produce clusters. Clusters were in fact produced for correlation thresholds of 0.7, 0.8, 0.9, 0.95 and 0.99.


The full list of clusters is included in Appendix 2, and the following maps show the larger clusters for monthly correlation thresholds of 0.8, 0.9 and 0.99.

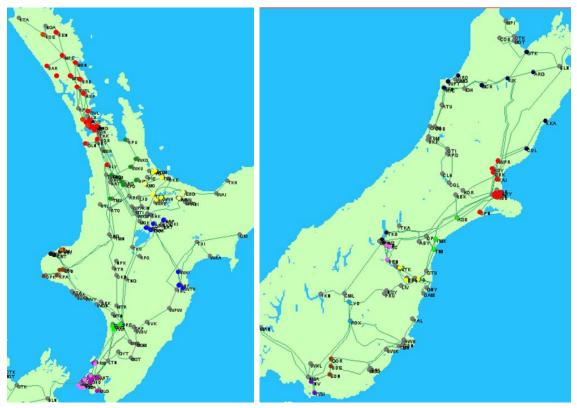

A word of warning: the maps are included for illustrative purposes only, do not show the detail of each node in a cluster, and therefore can be misleading as a guide to hedging. Readers should refer to the cluster lists in the Appendix.

Figure 6 – Larger Clusters Obtained with Correlation = 0.8

Figure 7 – Larger Clusters Obtained with Correlation = 0.9

Figure 8 – Larger Clusters Obtained with Correlation = 0.99

If a hedger can define the materiality of basis risk in terms of the cluster correlation threshold, then they need only refer to the relevant clusters above and can then be confident that hedging at nodes within the same cluster as their physical node(s) will result in a hedging strategy that has immaterial basis risk. A word of caution, however, must be added to this statement: this assumes that WIBR remains the same as it was over the study period. In reality, it could change so that clusters either expand or contract over time.

For the purposes of phase 2 of the study, 0.9 was used as the correlation threshold, not because of any consideration of materiality, but in order to get enough clusters to give meaningful results without adding an excessive amount of data. This choice also allowed most key hubs to be in clusters of their own except where the correlation between major nodes is very high:

- WKM220, SFD220, HAY220, and BPE220 are in separate clusters;
- OTA110, OTA220, HLY220 and HLY033 are in one cluster together;
- HLY033 is also in another cluster without other major nodes;
- BEN, ISL and STK are in separate clusters;
- ROX110 is in a cluster without other major nodes;
- TWI220, CYD220, CYD033 and ROX220 are in a cluster together.

5 Analysis of WIBR Drivers

Having completed the cluster analysis, phase 2 of the study first required calculating the average price at each cluster (defined using 0.9 as the correlation threshold) for all half hours in the study period from 1-Jan-07 to 31-Dec-11.

5.1 WIBR Drivers

A measure of the degree of WIBR was calculated for each half hour. Three methods of calculation were tested:

- 1. the standard deviation of the cluster prices in the half hour;
- 2. the absolute spread of prices, equal to the maximum cluster price minus the minimum cluster price divided by a constant; and
- 3. the relative spread of prices, equal to the maximum cluster price minus the minimum cluster price, divided by the average cluster price in the half hour.

The standard deviation tends to hide more extreme events, for example when the price at only one cluster is much different to the others. The absolute spread of prices is tempting to use because it highlights extreme events such as 26-Mar-11 when provisional prices²¹ reached \$20,000/MWh. However, this measure tends to over-emphasise events with extreme prices, which causes the results of the analysis to be more difficult to interpret. The relative spread of prices was therefore used in phase 2.

The spread of prices was compared against a variety of candidates for being key drivers of basis risk within each island, including the following parameters recommended in our report in late 2011:

- total island demand;
- total capacity of circuits in outage;
- total loading on the grid in the island;
- total MW of generation having an outage within the island;
- total power transfer on the HVDC link, with northward flow defined as positive;
- change in offers during the half hour.

The capacity of equation constraints²² was also considered as a candidate WIBR driver, but it was rejected on two counts. Firstly, it is actually quite difficult to track the capacity of equation constraints because they are not all permanent, so for example many only apply during outages. Secondly, the impact of equation constraints to limit power flows during outages should already be captured by analysing transmission and generation outages as WIBR drivers.

A significant effort was required to process the appropriate data for each half hour of the study period. Total island demand was only available back to 1-Jun-07, which effectively limited the study period to Jun-07 to Dec-11, although this still covered a total of 80,398 trading periods.

²¹ During the study and at the time of writing, 26-Mar-11 provisional prices were the only prices available. It is anticipated that in the near future final prices will be published that are closer to \$3,000/MWh.

 $^{^{22}}$ The capacity is equal to the constant value on the right hand side of the equation constraint.

Longer records of half hourly demand are available, but are net of embedded generation. The dataset used is known as the "GXP Demand" available from the Market Data menu in WITS, and is the raw demand data used in SPD to calculate final prices. This dataset was published starting in Jun-07 and is gross demand except at nodes where wind farms inject, so this demand series represents the net demand that must be supplied by all other generation.

Circuit outages were extracted from data available from em6 through to 15-Jun-09, and then from the SPD daily case data files which are now available from the Authority. As these outages were processed, however, it quickly became apparent that the total capacity in outage is a poor measure of the impact of the outages on the market, primarily because many lines and transformers, in particular, have listed ratings far in excess of their actual loading.

For example, many transformers have ratings of 2,000 MW despite being loaded at just a few percent of this value²³. The loss of a transformer rated at 2,000 MW does not represent the loss of 2,000 MW of capacity if the transformer normally never exceeds a loading of 100 MW, for example.

Outages and arc flows were processed to determine the likely impact on power flows, based on the running average of the daily maximum power flowing in the outaged line. For example, if a line had listed capacity of 500 MW but normally peaked at 100 MW, then the loss of capacity due to the outage was taken as the lower figure. Transformer outages were excluded from the outage calculations, as were HVDC outages, the latter effectively being included in the HVDC flows data.

We also calculated the total transmission outage due to "transmission groups" being in outage, where we defined a transmission group as the line or lines connecting two nodes. In a transmission group outage, two nodes entirely lose their direct connection, which means that a group outage potentially has a greater impact on dispatch and pricing outcomes than an outage which leaves two nodes directly connected. For example, two lines connect directly between Whakamaru and Otahuhu. If one line is out then it is counted as an outage but not a group outage. If both lines are out then the outage is counted as a group outage.

A similar issue was faced with the total loading on the grid which, in principle, is equal to the total power flowing on the grid divided by the total listed capacity. With so many grid elements with capacity listed at 2,000 MW this approach would always indicate a lightly loaded grid. Instead, the arc flow on all lines was increased by 10%, 20% and 30% which sometimes resulted in one or more lines running over their capacity. The total overload in MW was then recorded against the relevant 10%, 20% or 30% flow increase. In effect, this approach provides a measure of how close, in physical terms²⁴, lines are running to their respective limits. For the purposes of phase 2, only the 30% overload figure was used, as it provided the clearest signal of grid loading.

²³ The reason for this is unknown (and was not checked), but may have to do with the transformers being highly unlikely to ever constrain.

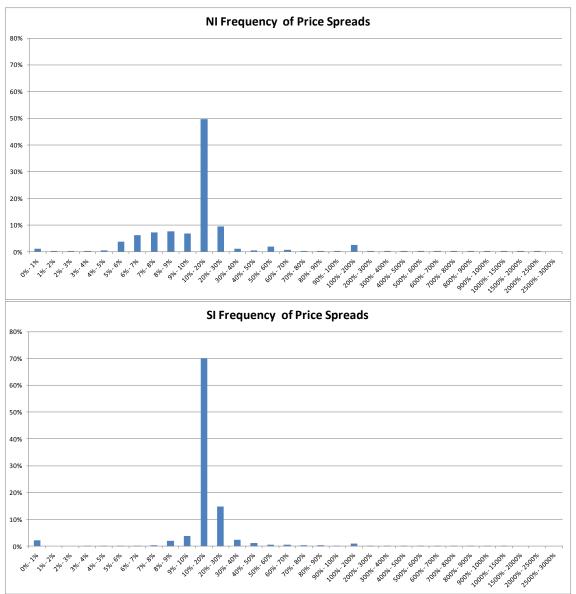
²⁴ In market terms, generation is dispatched to ensure that lines are not overloaded.

Generation outages are more difficult to determine from actual generation data because it cannot be determined if the loss of generation is due to an outage or due to some other cause such as purely commercial factors, or simply just lack of demand.

The POCP web site has voluntarily disclosed data for the major thermal generators, so this data was used to estimate the total MW of generation outage in each half hour.

The change in offers in each half hour is the square root of the mean of the squares (RMS) of the change in offer quantity across the following price bands since the same half hour in the preceding week: up to \$10/MWh, \$10 to \$30, \$30 to \$50, \$50 to \$100, \$100 to \$300, \$300 to \$500, \$500 to \$1,000, \$1,000 to \$3,000, \$3,000 to \$5,000 and over \$5000.

In addition, we also looked at a range of other parameters that potentially play a causative role in creating basis risk:


- rates of change of the parameters described above;
- time of day, represented by trading period number;
- time of year;
- capacity margin, equal to the total quantity offered for the half hour less the total demand;
- maximum offer price;
- the total of the SIR and FIR price in the relevant island.

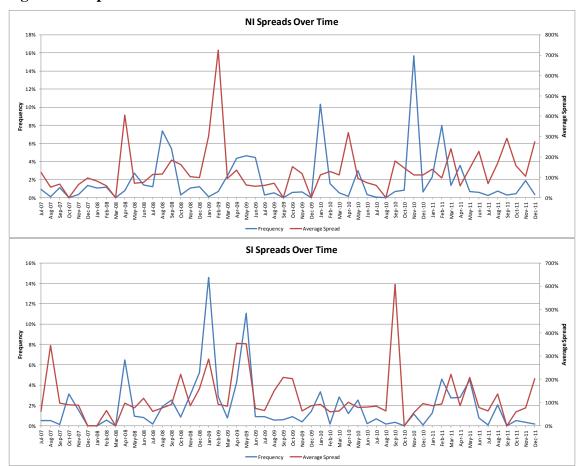
5.2 Results

This section contains a large number of charts with brief comments and observations, which are summarised in section 5.3.

The following two histograms show the frequency of price spreads²⁵ over all half hours of the study period, in bands from zero up to the highest spreads of just under 3,000%.

²⁵ Recall that the price spread is equal to the difference between the highest and lowest cluster price in the trading period, divided by the average cluster price in the period.

Figure 9 – Overall Frequency of Price Spreads


Price spreads in the NI appear in significant numbers from quite low values around 5% through to 30%, whereas in the SI they are more tightly grouped in the bands between 10% and 30%. Spreads well in excess of 100% are visible on the NI histogram but not so on the SI histogram, indicating the relative frequency of the extreme spreads is much higher in the NI.

If a simple correlation is performed between the parameters listed in section 5.1 and the spreads, over the study period, then the results are truly disappointing: the highest correlation between price spread and WIBR driver is only 0.09. However, using linear regression analysis produced a somewhat stronger result, indicating that circuit outages, generation outages and demand contributed about equally to creating the price spreads each half hour.

However, only a relatively small proportion of all trading periods have price spreads which are above the threshold to be considered as contributing to basis risk, so after initial testing, it was decided to focus on those half hours with the highest price spreads. The average spread over the study period was 21.5% in the SI and 19.5% in the NI, so the threshold spread for the analysis was chosen to be 50%, which is high enough to indicate a spread significantly above average (and almost certainly associated with a binding constraint as opposed to losses), but low enough to give a large sample to work with. The sample size reduced from 80,399 periods down to 4,514 in the NI (5.6% of the total periods) and to 2,793 in the SI (3.5% of the total periods), which reinforces the initial observation that there are more extreme events in the NI than in the SI.

In the following, we refer to these two sets of events as 'high price spread events', and the graphs below typically show the frequency of these events and the average magnitude of the price spread.

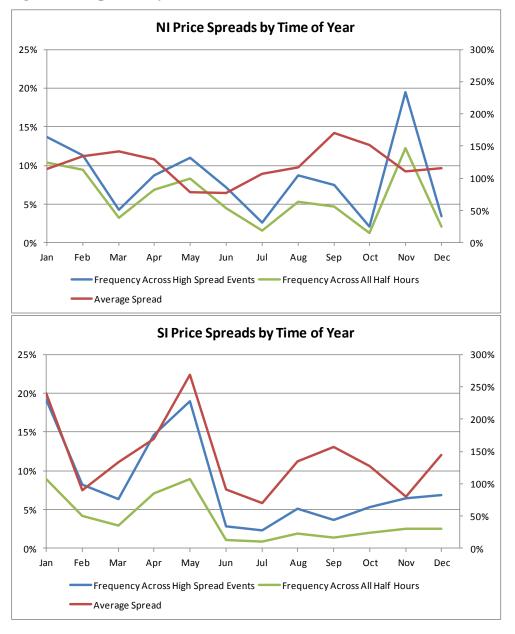
Figure 10 shows how the frequency and magnitude of spreads has changed by month over the course of the study period. The charts show periods where high spreads have occurred more or less frequently, but the only trend that is evident late in the study period is that the average spread during the high spread events is increasing in the NI.

How to Interpret the Following Graphs

Most of the following figures show graphs of high price spread events against a range of values of a WBIR driver. In each graph, the frequency is shown in two ways: in blue and in green.

The blue curve shows frequency relative to the total number of high price spread events, which is much less than the total number of periods in the study.

The green curve shows frequency relative to the total number of periods from 1-Jun-07 to 31-Dec-11. For example, in Figure 12 (which shows high spread events by HVDC flow) the blue curve on the NI graph shows that more high price spread events occur when the flow is 400 - 450 MW north than for any other value of flow: about 9% of all high price spread events occurred in this flow range.


But the green curve shows that flow of 650 – 700 MW north is the most likely range in which high price spread events might occur: about 27% of all periods in the study with flow in this range had events.

The blue curve is shown for reference, but it is the green curve that is the most important measure of the frequency of high price spread events.

The red curve shows the average magnitude of high price spread events, i.e. the average price spread (relative to the trading period average price) during these events.

On all graphs, the left hand vertical axis is for frequency (blue and green curves) and the right hand vertical axis is for the average magnitude of price spread (amongst high price spread events).

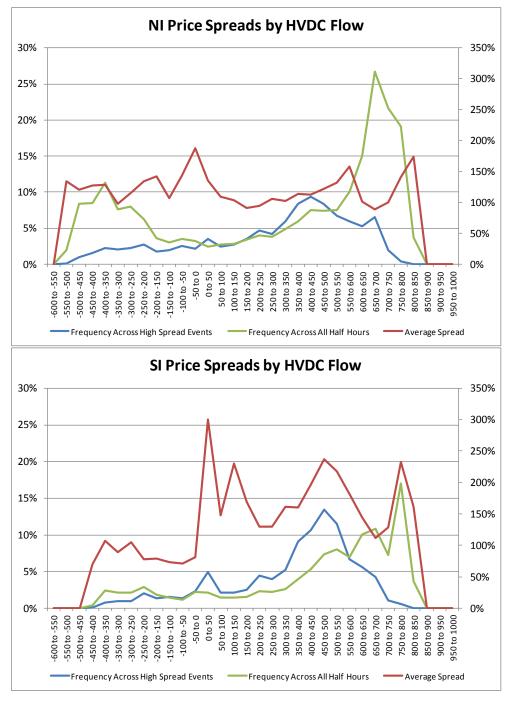

Figure 11 shows the high price spreads by month over the study period. The SI has two distinct peaks in January and in April-May which are due to the events of the 2008 dry year. The NI has peaks in January, May, August-September and November, arising from Jan-10, May-09, August-September 2008 and Nov-10, respectively.

Figure 11 – Spreads by Time of Year

Figure 12 shows high price spread events against the flow on the HVDC link, where positive flow is in the northward direction. In the NI, high price spread events, when they occur, increase in frequency with northward flow to a peak in the 400 - 450 MW band. But taken over all periods they peak close to the extreme ends of the spectrum of flow, i.e. the highest flow values had a greater likelihood of a high price spread event. The average price spread is more or less constant across the range of flows.

In the SI, high price spread events are more common with high flows northward, and the average spread is also significantly higher with northward flows.

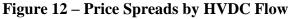


Figure 13 shows high price spread events against total demand for the relevant island. In the NI, amongst these events only, they are most likely to occur when demand is between 2,900 MW and 3,400 MW but taken over all periods they are much more likely to occur with demand in excess of 4,300 MW than with lower demand. The average spread, however, is more or less constant over the entire range of NI demand.

In the SI, these events are most likely to when demand is between 1,500 and 1,800 MW but with average spread peaking at lower levels of demand up to 1,200 MW.

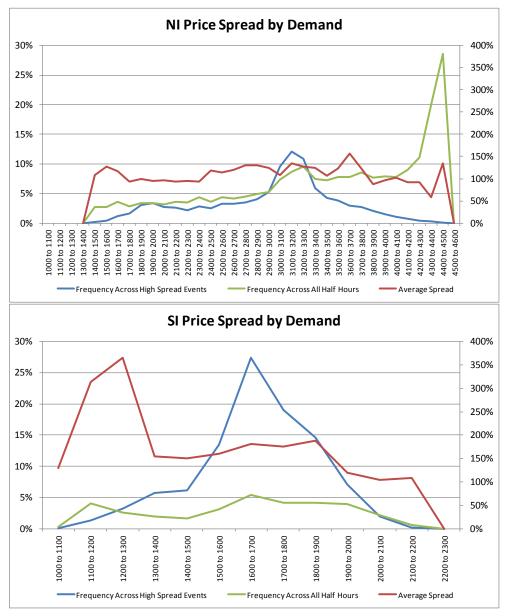
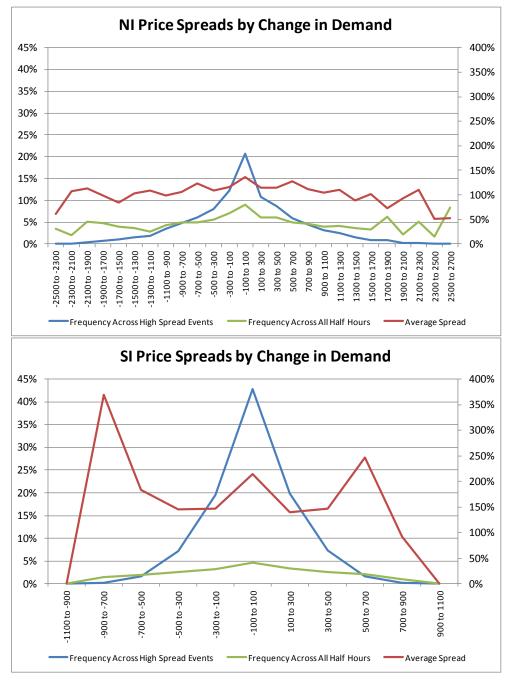



Figure 13 – Price Spreads by Demand

Figure 14 shows high price spread events by change in demand from one trading period to the next. Rather surprisingly, the frequency has a peak at around zero change in demand in both islands. In the NI the average spread has a weak peak at around zero change whereas the SI exhibits strong peaks at the extremes of high and low change in demand, with a smaller peak at around zero change.

Figure 14 – Price Spreads by Change in Demand

Figure 15 shows high price spread events by the total MW effectively lost through circuit outages. In the NI the green curve shows that events are much more likely at higher values of circuit outage, with a strong peak between 450 and 500 MW. The average spread also exhibits a peak at higher circuit outage values.

In the SI, the frequency and magnitude patterns are stronger than in the NI.

Figure 15 – Price Spreads by Circuit Outages in MW

Figure 16 shows high price spread events by the change in circuit outages between trading periods. Both islands show peaks in frequency in the 0 - 100 MW of circuit outage change, but the green curves show that events are more likely when the rate of change in circuit outage is highly positive or negative, and particularly so in the SI. Both islands also show peaks in magnitude at the extremes, particularly in the SI.

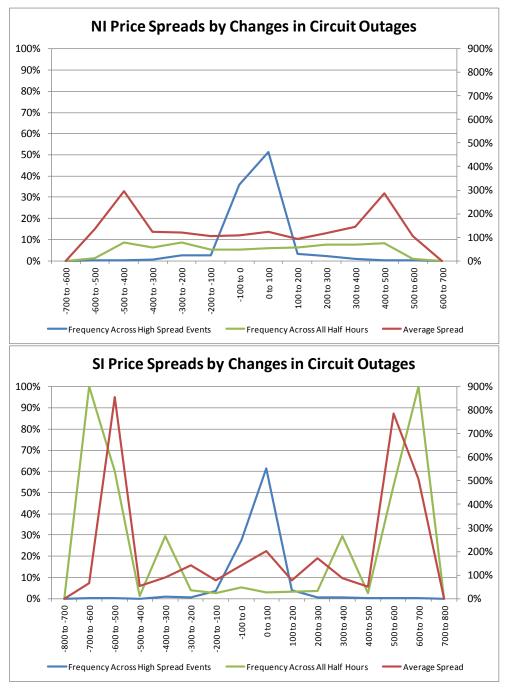


Figure 16 – Price Spreads by Change in Circuit Outages

Figure 17 shows high price spread events by group outage²⁶. The relationship between price spreads and group outages in the NI is weak, but in the SI frequency and average spread peak at higher group outage values.

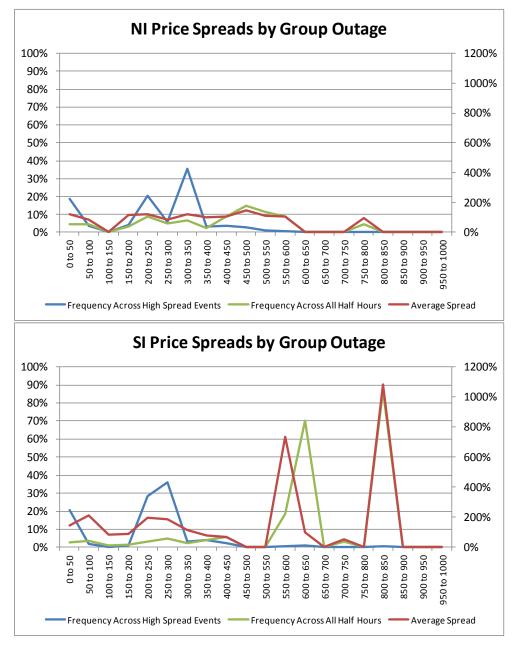
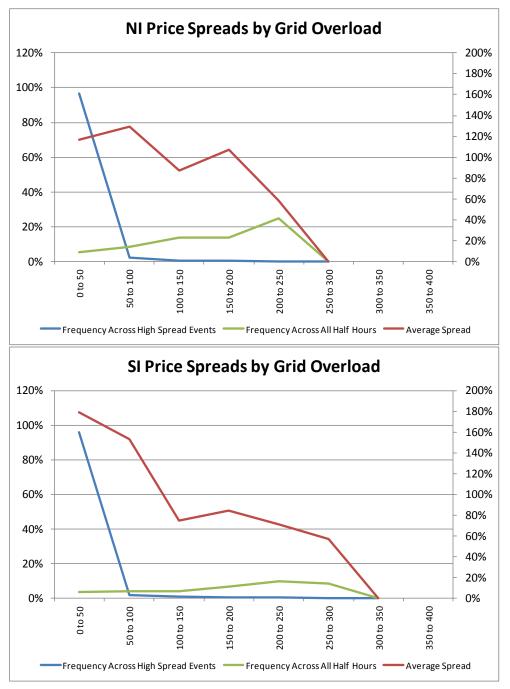
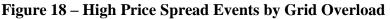




Figure 17 – High Price Spread Events by Group Outage in MW

²⁶ A group outage occurs when all of the lines directly connecting two nodes are taken out of service at the same time.

Figure 18 shows high price spread events by grid overload²⁷. During periods with events, high price spreads occur more often at zero or low values of overload, although events are more likely generally when overload is higher. Somewhat surprisingly, average spreads reduce as overload increases.

Issue 1

²⁷ The total MW over capacity that would result in increasing all arc flow in a trading period by 30%.

Figure 19 shows high price spread events by total generation planned outages in MW. In both islands the frequency amongst high price spread events peaks at lower outage values, but in the SI events are much more likely when the total generation outage is higher. In both islands the average price spread increases with the total MW in outage.

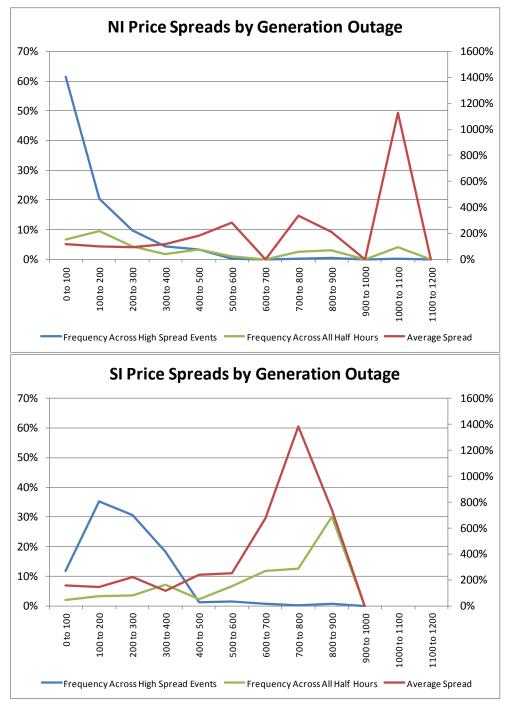


Figure 19 – High Price Events by Generation Outage in MW

Figure 20 shows high price spread events by change in total generation outage. In the NI the frequency of events peaks strongly around zero change, whereas in the SI events are more likely to occur when the rate of change is high, either positive or negative. In the SI a high rate of increase in generation outage is associated with high average spread, and in the NI a high rate of decrease in outage is also associated with higher average spreads.

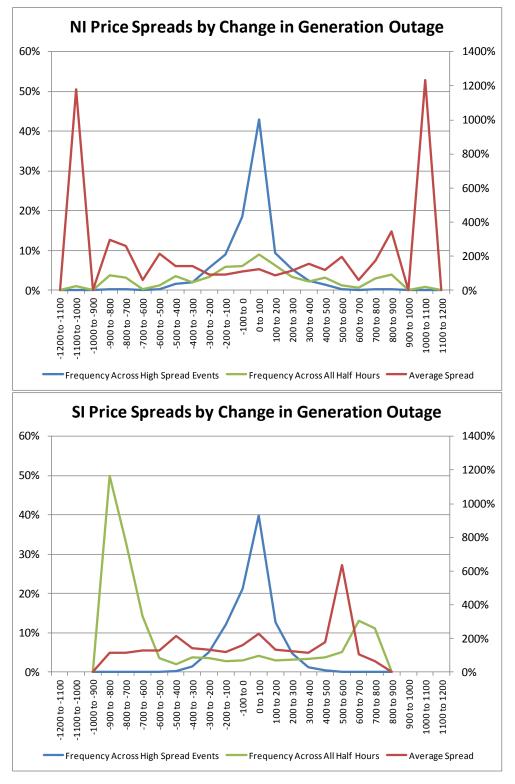


Figure 20 – High Price Spread Events by Change in Generation Outage in MW

Figure 21 shows price spreads by the RMS change in offers²⁸ between trading periods. Amongst high price spread events, the frequency peaks at low to moderate offer change values (300 - 400 MW) in both islands. In both islands, frequency across all periods and average spread vary weakly across the range of offer changes. If anything, higher frequencies and spreads are associated with lower values of offer change.

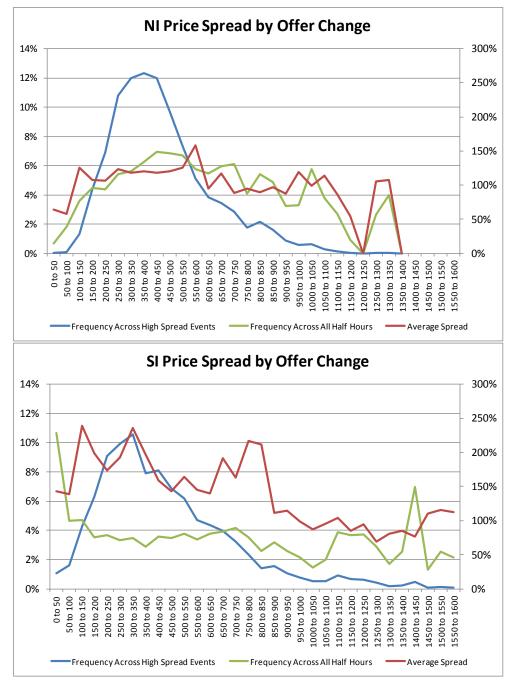


Figure 21 – High Price Spread Events by Change in Offers

²⁸ The change in offers in each half hour is the square root of the mean of the squares (RMS) of the change in offer quantity across the following price bands since the same half hour in the preceding week: up to \$10/MWh, \$10 to \$30, \$30 to \$50, \$50 to \$100, \$100 to \$300, \$300 to \$500, \$500 to \$1,000, \$1,000 to \$3,000, \$3,000 to \$5,000 and over \$5000

Figure 22 shows high price spread events by the maximum offer price, which is calculated as the average offer price in each of the price bands used for the offer change analysis (so the maximum offer shown in the graphs may be less than the highest offer in the trading period). The NI shows a moderate peak in frequency over all periods at the high end of the maximum offer price range.

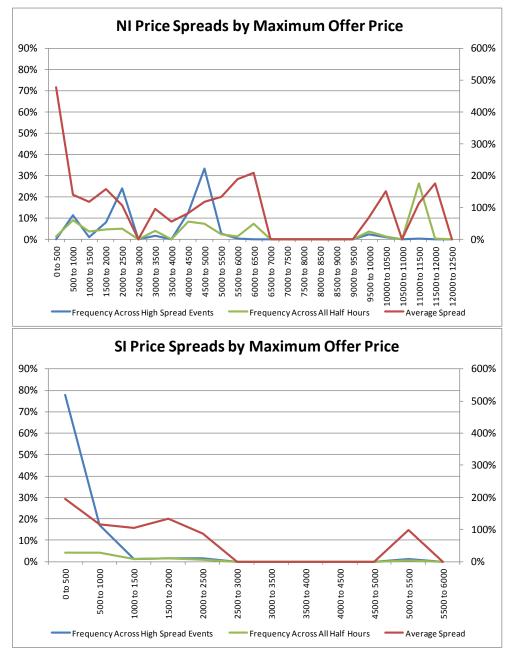


Figure 22 – High Price Spread Events by Maximum Offer Price

Figure 23 shows high price spread events by the sum of the FIR and SIR prices in the island, an indicator of the balance between the supply of and demand for reserves (i.e. higher price indicates tighter balance). About 95% of all events occur when the sum of the reserve prices is less than \$40/MWh in the NI and \$10/MWh in the SI. In the NI events are more likely to occur at higher values of the sum of the reserves prices, and average price spread is also greater at higher reserve prices.

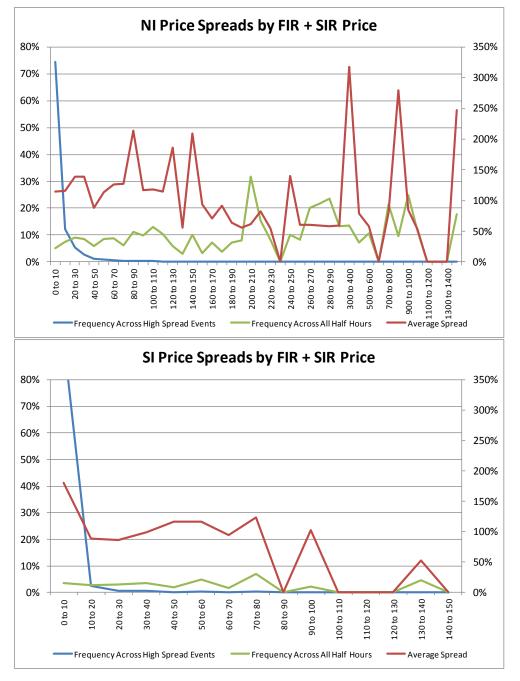
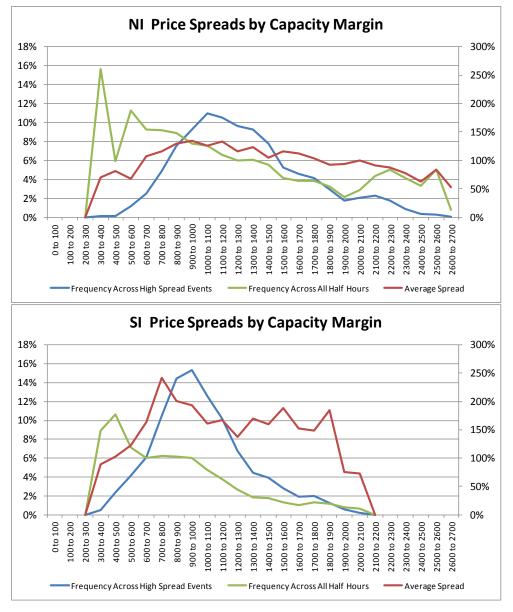



Figure 23 – High Price Spread Events by FIR +SIR Price

Figure 24 shows high price spread events by capacity margin, defined as the total quantity offered in the trading period less total island demand. The frequency of events when they occur peaks mid-range, but overall periods events are more likely to occur when the capacity margin is at the low end of the range, i.e. when the gap between supply and demand is small. The average price spread peaks at low to moderate values of capacity margin.

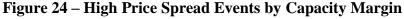


Figure 25 shows high price spread events by change in capacity margin. Amongst the events, the peak occurs at around zero change, and both islands exhibit a peak in average spread at this point, but with another peak in the SI at for larger decreases in capacity margin, and a small peak in the NI at high increases in capacity margin. Over all periods in both islands, events are most likely to occur around zero change and again at high rates of increase and decrease in capacity margin.

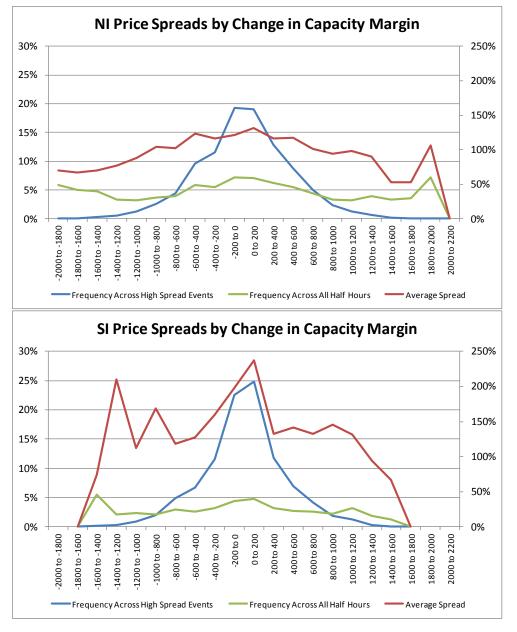
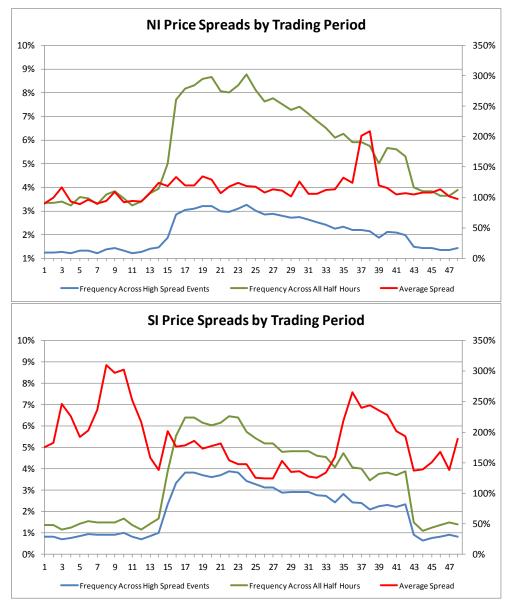



Figure 25 – High Price Spread Events by Change in Capacity Margin

Figure 26 graphs the frequency and average value of high price spread events by trading period, and shows a distinct pattern: the frequency increases sharply in periods 15 and 16 (7:00 am to 8:00 am) to peak in a period shortly after, followed by a second peak two hours later, then falls through the rest of day to period 43 when it falls sharply again to its overnight level.

In both islands the average spread has an evening peak between periods 36 and 38, although in the SI the evening peak falls off slower than in the NI. The SI actually peaks overnight in periods 8 through 10.

Figure 26 – High Price Spreads by Trading Period

5.3 Summary of Observations

The observations from section 5.2 are summarised below.

- 1. High price spreads are more likely in the NI and are less tightly grouped around the average of 19.5% than they are in the SI (where they are tightly grouped around the average value of 21.5%);
- 2. The average spread during the high spread events trended slightly upwards in the NI in the last year of the study period;

3. Time of Year

a. SI price spread frequency peaked in Jan, and April-May 2008 which are largely the result of the 2008 dry year;

4. HVDC Flows

- a. High price spread events in the NI are associated with higher flows on the HVDC link in both directions, but particularly with northward flow;
- b. High price spread events in the SI are associated with high northward flows on the HVDC link;
- c. Price spreads in the SI are higher when the HVDC link is flowing northward;

5. Demand

- a. In the NI, high price spreads are more likely with higher demand;
- b. In the SI, high price spreads are more likely when demand is between 1,500 and 1,800 MW but with average spread peaking at lower levels of demand up to 1,200 MW;
- c. The frequency of high price spread events peaks at around zero change in demand in both islands;
- d. The SI exhibits strong peaks at the extremes of high and low change in demand, with a smaller peak at around zero change;

6. Circuit Outages

- a. High price spread events are more likely and larger on average with higher circuit outages;
- b. High price spread events are more likely when the rate of change in circuit outage is high, but particularly in the SI;
- c. High price spread events are greater in magnitude at higher rates of change in circuit outages;
- d. In the SI, high price spread events are more likely and larger on average with higher group outage MW;

7. Grid Overload

- a. In both islands high price spread events are more likely with higher values of grid overload, but average price spreads reduce as overload increases;
- b. In the SI price spread events are much more likely when the total generation in outage is higher;

8. Generation Outage

- a. In both islands the average price spread increases with the total generation in outage;
- b. In the NI the frequency of high price spread events peaks strongly around zero change in generation outage;

- c. In the SI events are more likely to occur when the rate of change in generation is high positive or negative;
- d. A high rate of increase in generation outage is associated with high average spread in both islands;
- e. In the NI a high rate of decrease in generation outage is also associated with high average spread;

9. Offer Change

- a. Amongst high price spread events, the frequency peaks at low to moderate offer change values (300 400 MW) in both islands;
- b. The NI shows a moderate peak in frequency over all periods at the high end of the maximum offer price range;

10. Reserves

- a. The great majority of high price spread events occur when the sum of the reserve prices is less than \$40/MWh in the NI and \$10/MWh in the SI;
- b. In the NI events are more likely to occur at higher values of the sum of the reserves prices, and the average price spread is also greater at higher reserve prices;

11. Capacity Margin

- a. High price spread events are more likely to occur when the capacity margin is at the low end of the range;
- b. Amongst high price spread events the peak in frequency occurs at around zero change in capacity margin;
- c. Both islands exhibit a peak in average spread at zero change in capacity margin, with smaller peaks in the SI when capacity margin decrease is in the range from 1,400 1,600 MW, and in the NI when capacity margin increase is in the range from 1,800 2,000 MW;
- d. In both islands the frequency of events peaks at around zero change in capacity margin and also at high rates of increase and decrease in capacity margin;

12. Time of Day

- a. In both islands the frequency of high price spread events jumps in trading periods 15 and 16 to a peak shortly after, then falls progressively over the day, and finally falls sharply in period 43;
- b. average magnitude of spread has an evening peak between periods 36 and 38;
- c. in the SI the evening peak in magnitude falls off slower than it does in the NI;
- d. in the SI the overall peak in the average magnitude of spread occurs overnight in periods 8 through 10.

5.4 Scoring the WIBR Drivers

Various attempts were made to quantify correlations between the WIBR drivers and the frequency and average magnitude of high price spread events, but these were frustrated by the highly non-linear character of many of the relationships evident in the graphs in section 5.2, plus the small number of samples at higher values of the WIBR drivers. In the end, a relatively simple and partly subjective method of scoring each WIBR driver was chosen and the results of this are shown in Table 3 and Table 4 below.

How the WIBR Drivers are Scored

The scoring system is not totally objective, but is intended to indicate the ranking of a WIBR driver in terms of the strength of the associations between the WIBR driver and either the frequency or magnitude of high price spread events. High accuracy is not required to achieve this ranking.

Scoring is done separately for the green curve (frequency over all half hours in the study) and the red curve (average magnitude of the spread) for each WIBR driver. The blue curve is not scored. A maximum and minimum value of the relevant variable is taken from the data behind the relevant graph over the range of values taken by the WIBR driver, and one is divided by the other. If an increase in the frequency or magnitude is associated with an increase in the WIBR driver, then division is done so that the score is greater than one, and vice versa, down to a minimum possible value of zero.

If the driver is a rate of change driver, for example the change in demand by period, it is was scored based on the highest of the scores at the negative and positive change ends of its graph.

Some drivers have peaks near the end of their range, but with a sharp fall at higher (or lower) values, so in these cases the peak value was taken.

Some drivers have peaks near the end of their range which could be the result of random effects in a small number of samples at the extreme values, but no attempt was made to correct for this.

A driver that appears to have no association with a WIBR driver would appear on its graph as a straight horizontal line and would score one.

Example: HVDC Flow and NI high price spread events (Figure 12)

The green frequency curve peaks at just under 27% in the 650 – 700 MW north range, and has a minimum of 2.4% in the 0 – 50 MW north range, so northward HVDC flow is obviously associated with high price spread events, and more so than southward flow. So HVDC flow frequency is scored as 27/2.4 = 11.3 which puts it at the top of the list for frequency of high price spread events in the NI.

The tables below are sorted first by frequency score and then by magnitude score. Table 5 shows the average of the scores across both islands.

NI Driver	Frequency Score	Magnitude Score
HVDC Transfer	11.3	1.9
Demand	10.6	1.0
Time of year (month)	7.5	2.2
Circuit Outage	7.5	2.9
Capacity Margin	7.0	0.5
FIR + SIR Price	5.0	2.2
Grid Overload	4.5	0.5
Group Circuit Outage	3.4	1.0
Maximum Offer Price	2.9	0.4
Trading Period	2.8	2.3
Circuit Outage Change	1.6	2.7
Capacity Margin Change	1.0	0.6
Demand Change	0.9	0.4
Offers Change	0.6	0.7
Generation Outage	0.4	9.6
Generation Outage Change	0.4	9.9

Table 3 – NI WIBR Scores

Table 4 – SI WIBR Scores

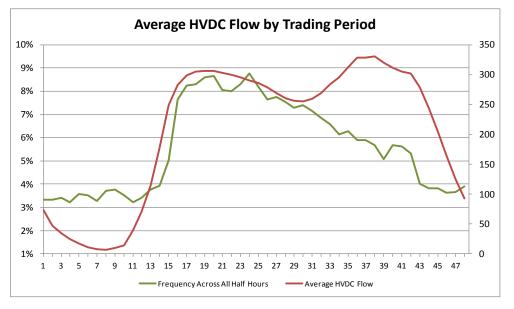
SI Driver	Frequency Score	Magnitude Score
Circuit Outage Change	33.3	3.9
Circuit Outage	25.6	5.6
Group Circuit Outage	19.4	7.4
Generation Outage	15.9	8.8
Capacity Margin	13.4	0.3
Time of year (month)	10.0	3.8
HVDC Transfer	7.1	2.6
Trading Period	6.5	2.5
Generation Outage Change	4.3	5.4
Grid Overload	2.9	0.3
FIR + SIR Price	1.3	0.3
Capacity Margin Change	1.0	0.9
Offers Change	0.2	0.5
Demand Change	0.2	1.2
Maximum Offer Price	0.2	0.5
Demand	0.1	0.3

Driver Both Islands	Average Frequency Score	Average Magnitude Score
Circuit Outage Change	17.5	3.3
Circuit Outage	16.5	4.2
Group Circuit Outage	11.4	4.2
Capacity Margin	10.2	0.4
HVDC Transfer	9.2	2.2
Time of year (month)	8.8	3.0
Generation Outage	8.2	9.2
Demand	5.4	0.7
Trading Period	4.6	2.4
Grid Overload	3.7	0.4
FIR + SIR Price	3.2	1.2
Generation Outage Change	2.4	7.7
Maximum Offer Price	1.5	0.4
Capacity Margin Change	1.0	0.7
Demand Change	0.6	0.8
Offers Change	0.4	0.6

Table 5 – Average Score across both Islands

A score above one indicates a degree of positive association (correlation) between the WIBR driver and the frequency or magnitude of high price spread events. In the NI, 11 drivers score above one for frequency, but only eight for magnitude. The strongest associations for magnitude are with generation outages, but there are several strong associations with frequency.

In the SI, 11 drivers score above one for frequency, but this set of drivers is different to the 11 in the NI. Circuit and group outage, and generation outage are particularly strong drivers for magnitude in the SI, and a total of nine drivers scoring above one for magnitude.


In both islands, magnitude is considerably less likely than frequency to be strongly associated with any particular WIBR driver. Across the two islands, no driver gains a score greater than 10 for magnitude versus eight for frequency, and there are 14 scores of five or greater for frequency against six for magnitude. The lower ratings for magnitude are particularly evident in the NI where high price spread events are twice as common as in the SI. This all suggests that the magnitude of high price spread events, when they occur, has a significant random component, which in turn suggests that the magnitude could be harder to predict accurately than frequency.

But why is it, for example, that capacity margin is strongly associated with frequency but not with magnitude? As Figure 24 shows, low capacity margin is much more likely to be associated with high price spreads than high capacity margin, which intuitively makes sense (the system may be under stress, and patterns of flow atypical, when the capacity margin is low), but the average spread falls off with capacity margin below 700 MW, which is counterintuitive. Even more puzzling is the low ranking of change in demand: one could reasonably assume that rapid changes in demand might be associated with system stress and high price spreads. But Figure 14 shows that frequency peaks when the change in demand is around zero, and similarly the magnitude has a peak at around zero change in demand.

The answer may be found in the interaction of a number of factors, and the biggest clue is the graphs shown in Figure 26, which shows the frequency and magnitude of high price spread events by trading period. Although trading period on its own is not as strongly associated with high price spreads as a number of other WIBR drivers, the patterns exhibited in Figure 26 are so striking, and so similar in both islands for frequency, in particular, that they warranted further investigation.

The pattern of frequency across the day raised a number of questions. For example, one could easily imagine that the morning peak in demand could be associated with high price spread events, but then why is the evening peak less so? What other factors are at play across the day?

The following graphs show a number of the strongest WIBR drivers plotted across the day, starting with Figure 27 which has average HVDC flow by trading period, plotted alongside the frequency of high price spread events in the NI. As the following graphs show, the strongest WIBR drivers also tend to exhibit strong seasonality across the day with rapid change leading into the morning peak.

Figure 27 – Average HVDC Flow by Trading Period

Figure 28 shows the frequency of high price events over all periods (green curve), along with average island demand and capacity margin by trading period.

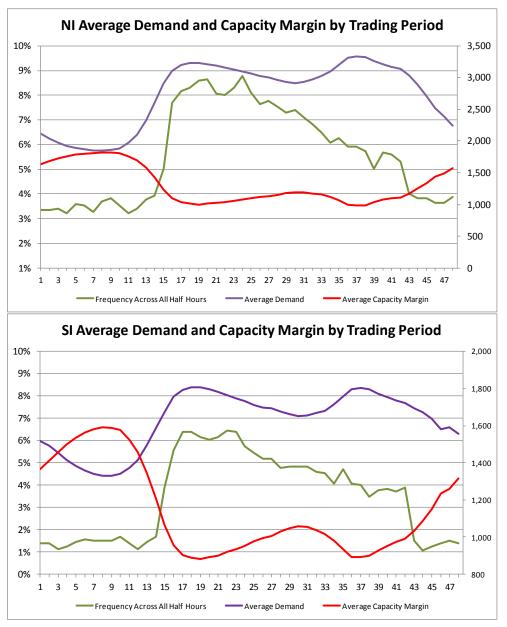


Figure 28 – Average Demand and Capacity Margin by Trading Period

Figure 29 and Figure 30 shows winter and summer demand by trading period, alongside the frequency of high price spread events by trading period.

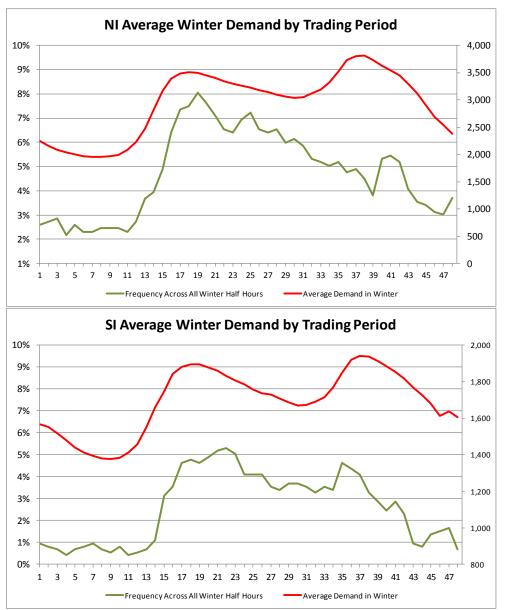


Figure 29 – Average Winter Demand and by Trading Period

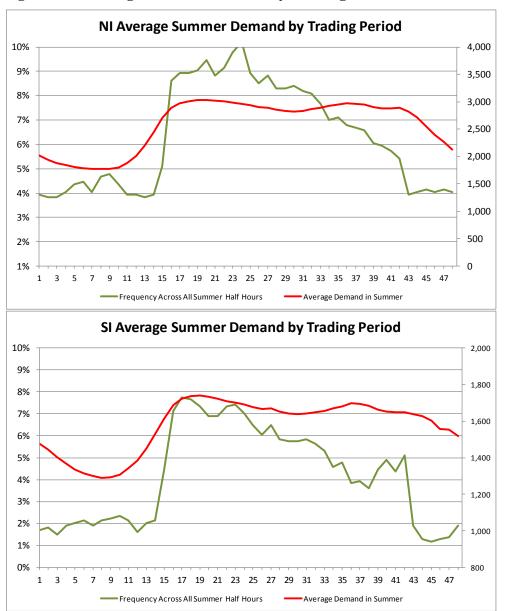


Figure 30 – Average Summer Demand by Trading Period

Figure 31 and Figure 32 show the average price spread by trading period alongside the frequency of high price spread events by trading period.

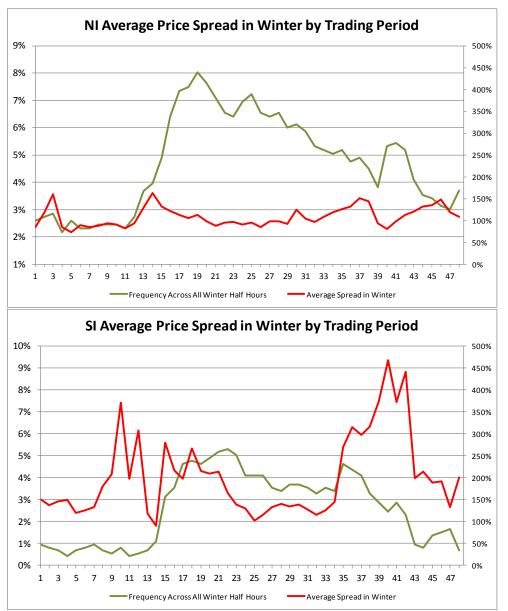
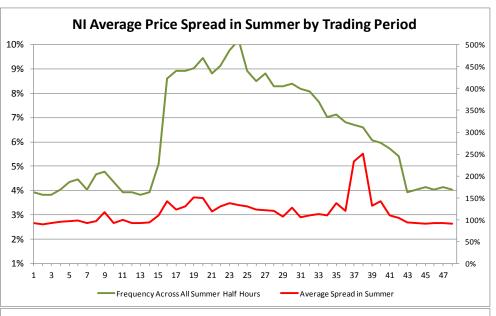



Figure 31 – Average Price Spread in Winter

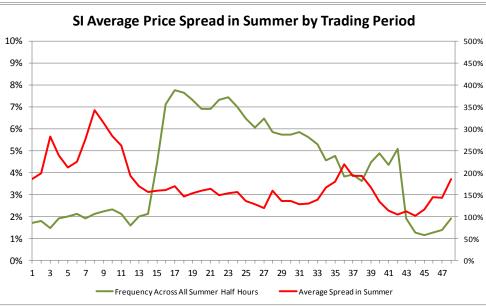


Figure 33 shows the frequency of high price events over all periods, along with average circuit outage.

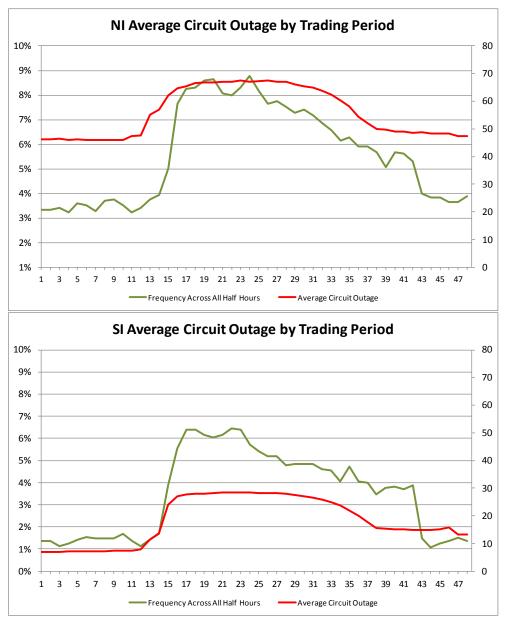


Figure 33 – Average Circuit Outage by Trading Period

Figure 34 shows the frequency of high price events over all periods, along with average generation outage.

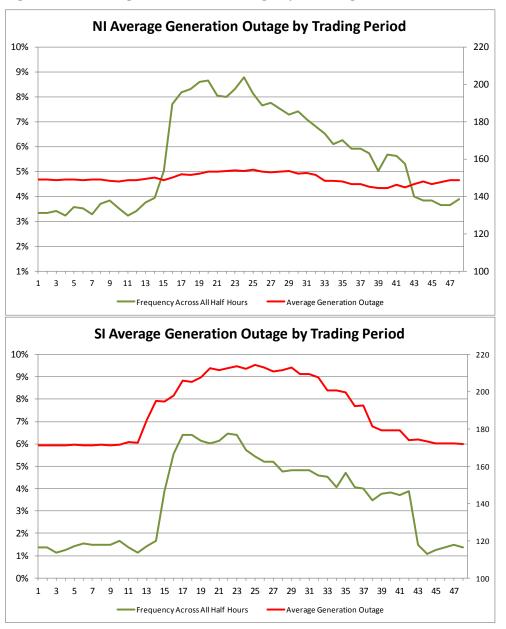


Figure 34 – Average Generation Outage by Trading Period

Correlations between the frequency by trading periods and the averages graphed above are shown in Table 6 below.

Island	Average HVDC Flow	Average Demand	Average Winter Demand	Average Summer Demand	Capacity Margin	Average Generation Outage	Average Circuit Outage
North Island	0.78	0.78	0.72	0.83	-0.82	0.66	0.93
South Island	0.79	0.78	0.80	0.75	-0.82	0.91	0.93

Table 6 – Correlations with Frequency by Trading Period

Given the relatively large of the sample size, the values in Table 6 indicate strong correlations with the frequency of high price spread events across the day.

Figure 35 shows the change in average demand by trading period for both winter and summer. The change in average demand is highest in the morning peak, particularly in winter in the NI, but despite rapid changes in demand leading into the evening peak, the frequency of high price spread events consistently falls across the day before falling off to the overnight level in period 43.

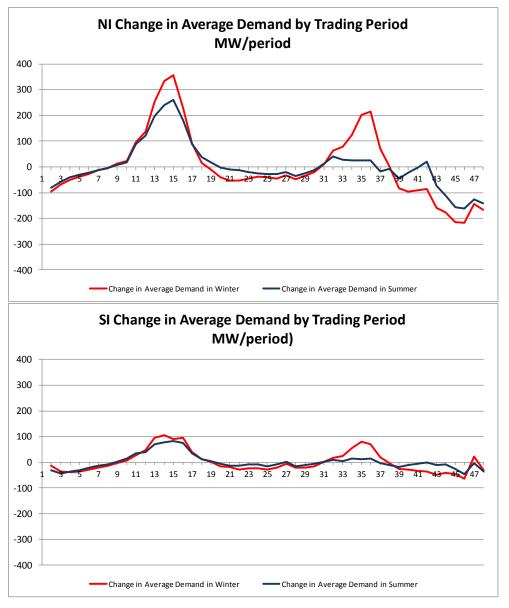


Figure 35 – Change in Average Demand by Trading Period

6 Discussion

Phase 3 of the study involved analysing the results of phase 2 for correlations, and causal relationships where possible, and then using this information to project into the foreseeable future, attempting to answer the question: will WIBR increase, decrease or

stay the same in future? The answer will inform the LPRTG's work on the need for, and design of instruments that hedge WIBR.

The WIBR driver scores in the tables in section 5.4 show the associations between a number of drivers and the frequency and average magnitude of high price spread events over the study period. These associations and the outlook are summarised in Table 7 below.

NI Driver	Impact Assessment	Outlook
Capacity Margin	Strongly associated with frequency of high price spreads in the SI, moderately so in the NI. Appears to play a key role in the morning peak, along with demand.	Capacity margin will fluctuate depending on a range of factors, but has reduced since the 1990s. Unlikely to significantly increase in future on average, but will fluctuate from year to year depending on increments in supply and demand.
Circuit Outage Group Circuit Outage	Strongly associated with frequency and magnitude of high price spreads in the SI, and with frequency in the NI. The increase of circuit outages seen leading into the morning peak probably adds to the risk of high price spread events.	Outages will continue in future. Unless the timing of outages can be changed, e.g. started earlier, they will continue to create WIBR.
Demand	Strongly associated with frequency of high price spreads in the NI, with a key role in the morning peak along with capacity margin.	Demand is forecast to grow in the longer term, and there is no evidence to suggest that the ramp up to the morning peak will slow in future.
FIR + SIR Price	Moderate association with frequency of high price spread events in the NI.	The addition of Pole 3 will reduce the propensity of the HVDC link to set the reserve risk in both islands, leading to a general fall in reserve prices and less WIBR, along with greater transfers across the HVDC link.
Generation Outage	Strongly associated with frequency of high price spread events in the SI, moderately associated with magnitude of these events in both islands.	There is nothing to indicate that generation outages will get any less or more common in future.
HVDC Transfer	Moderate to strong association with frequency of high price spread events in both islands.	The addition of Pole 3 will allow significantly greater transfers in both directions on the HVDC link relative to most of the study period, to a large extent because the HVDC link will typically not set the reserve risk until transfers of around 800 MW ²⁹ in the NI and 600 MW in the SI. Based on the study period, higher transfers could lead to an increase in WIBR, although the results for reserves indicate the opposite.
Time of year (month)	Moderate to strong association with frequency of high price spread events in both islands.	During the study period, time of year is primarily associated with seasonality of inflows, i.e. wet and dry years. Inflows will continue to impact significantly on flows on the grid for decades to come.
Trading Period	Frequency of high price spread events show a very distinct pattern over the day, peaking with the morning peak in periods 15 and 16, falling across the day then falling sharply in period 43.	This pattern appears to be a function of demand, capacity margin (offers less demand), circuit outages and generation outages, plus possible dynamic effects associated with experience that traders gain during the day. The association with WIBR is unlikely

 $^{^{29}}$ We assume the ability of Pole 2 + Pole 3 to cover the reserve risk of the HVDC link is around 500 MW. In this case the HVDC link would need to transfer 500 MW plus the output of the largest generator in the receiving island before it would set the risk, so 800 – 900 MW in the NI and 620 MW in the SI.

NI Driver	Impact Assessment	Outlook
		to change in future unless steps are taken to, for example, increase the rate at which experience is gained across the day.
Grid Overload	Grid overload is associated with the frequency of high price spread events to a moderate extent in both islands.	Grid upgrades completed after 2011 are likely to reduce the frequency of high price spread events.
Offers Change Maximum Offer Price	Not associated with high price spreads	

The results that indicate that WIBR might reduce in future are those for reserves prices and grid overload. The latter is an intuitive result: if grid capacity is increased then one would expect less WIBR, other things being equal.

The outlook for reserves prices is more complex due to the interaction between reserves and HVDC transfers. These two drivers are related in that higher transfers on the HVDC link have required large amounts of reserves over most of the study period, leading to higher reserves prices, as shown in Figure 36, to cover the reserve risk while Pole 1 has operated at low capacity (nil for southward transfers capacity). On the one hand, Pole 3 will reduce the need for reserves, which is likely to reduce reserves prices. But on the other hand, it will allow higher HVDC transfers, which the results of the study show are associated with a higher frequency of high price spread events. It is not clear from the data whether high price spread events were purely a result of high HVDC transfers or whether they resulted from interactions in the provision of reserve and generation (to cover reserve risk associated with HVDC transfers) which modified dispatch and power flows in ways which led to constraints. Adding to the complexity of the overall picture for HVDC flows and reserves, is the strong correlation between HVDC flow and time of day (refer to Figure 27 and Table 6).

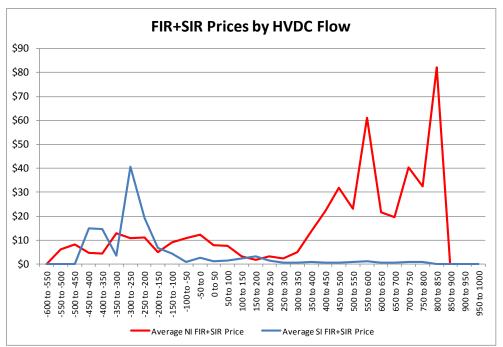


Figure 36 – Reserves Prices by HVDC Flow

6.1 Dynamic Effects Associated with Time of Day

The graphs in sections 5.4, starting at Figure 26 and running through to Figure 35, help to explain why the frequency of high price spread events peaks when the change in demand is around zero: the rate of change of demand slows as demand reaches its morning peak, which is also when the frequency of high price spread events peaks.

The distinctive pattern of frequency across the day suggests a more dynamic process is involved in the creation of high prices spread events than is captured by looking at each WIBR driver on its own. We postulate that leading into the morning peak, a number of factors create uncertainty for market participants including rapidly increasing demand, along with a rapidly narrowing capacity margin, commencement of the new day's transmission outages, and in the SI, generators beginning planned outages. Early in the morning, there may be greater uncertainty as to where demand will peak than later when the demand trend may be clearer. As the day progresses, it is entirely possible that generators are able to fine tune their offers to reduce the occurrence of any constraints that appear leading up to and in the morning peak, which would explain why the frequency of high price spread events consistently falls off during the day.

Figure 37 shows the frequency of high price spread events over all trading periods in weekdays and other days, plus the average demand for weekdays and other days. The pattern observed in Figure 26 is again evident, although the graphs show that high price spread events are significantly more likely on weekdays. Furthermore, the peak in frequency moves to the right as the peak in demand moves to the right for other days, which is an indication that the characteristic morning peak in frequency is strongly associated with demand.

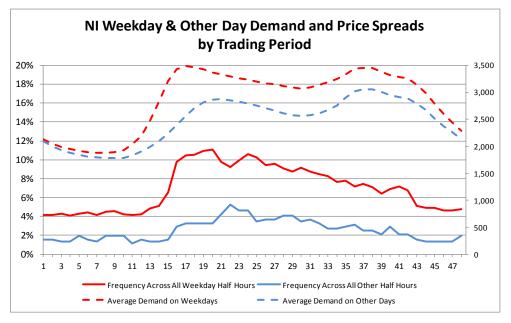
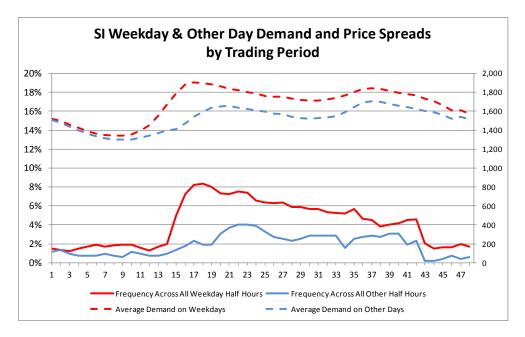



Figure 37 - Weekday & Other Day Demand and Price Spreads by Trading Period

To investigate the role of uncertainty further, a simple forecast of demand was created for all periods from 8-Jun-07 to 31-Dec-11 in which, for each island, the demand from the same trading period in the previous week was used as the forecast for the period demand. The RMS error is shown in Figure 38 below, after removing a handful of outliers, and in both islands it can be seen to peak in periods 13 through 17, and the highest two values in both islands are in periods 15 and 16, which is also when the frequency of high price spread events rises sharply towards the peak for the day.

The RMS error in the simple demand forecasts is lower for the rest of the day, including during the evening peak in demand.

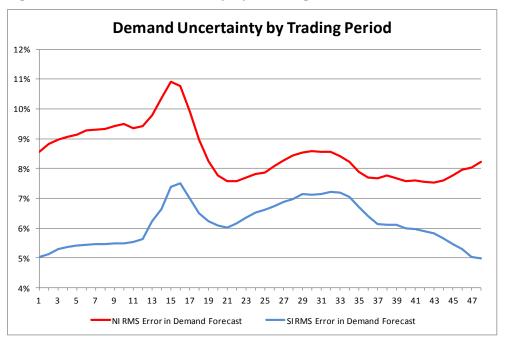


Figure 38 – Demand Uncertainty by Trading Period

The implication of this is quite clear: uncertainty around demand in the morning peak is a key causative factor for high price spread events. The corollary of this is also clear: reduce uncertainty in demand forecasts and you reduce WIBR.

7 Conclusions

Sixteen WIBR drivers were initially anlaysed across 7,307 periods when high price spread events occurred in one or other island. With the exception of only two drivers, all of these drivers showed some degree of positive association with either the frequency or magnitude of these events.

Projecting forward, the only drivers that might change significantly in future are grid capacity (via upgrades of the AC grid), reserves prices and HVDC transfers (once Pole 3 is commissioned). Of these three drivers, we can conclude:

- grid upgrades are likely to reduce WIBR (or at least until demand growth or the building of new generation 'uses up' the new capacity);
- the commissioning of Pole 3 may or may not change WIBR, depending on exactly how reserves and HVDC transfers interact to make constraints more or less likely.

The degree to which grid capacity (or lack of it) associates with WIBR is low to moderate compared to the other WIBR drivers, so the impact of AC grid upgrades on WIBR may in fact be difficult to measure against the general background of WIBR.

Over the majority of the study period, the HVDC link was the main bottleneck for interisland transfers, but this will no longer be the case once Pole 3 is commissioned. To get large transfers across the link, power must first be gotten to one or other end of the link, creating the potential for bottlenecks in the AC grid to become more obvious, and to create WIBR as a result.

Where these bottlenecks create INPDs between Otahuhu and Benmore, inter-island FTRs and basis swaps³⁰ will be available to hedge this risk. But where they create INPDs between one of the two FTR hubs and nodes within the same island (for example due to the SWE) then increases in HVDC flow will increase WIBR. One possible outcome is that HVDC transfers will be less strongly associated with high price spread events up to a point, but then more strongly associated at higher flows. A complicating factor is that HVDC flows exhibit a strong pattern across the day, so that the apparent association between HVDC flows and frequency of high price spread events may actually be more to do with time of day than with the HVDC flow itself.

As to the other drivers that are positively associated with high price spread events, some will increase (demand, for example, is forecast to continue growing) and the rest are not likely to move in a direction that will reduce WIBR (generation outages, circuit outages, capacity margin, wet and dry years).

Taken overall, there are some drivers that will tend to reduce WIBR in the foreseeable future, but on balance there are a greater number of stronger drivers that will tend to

³⁰ A basis swap is a hedge against INPD formed by buying and selling two CFDs or futures contracts for the same period but at different nodes. For example, the payout on a basis swap consisting of a futures contract bought at Otahuhu and a futures contract sold at Benmore increases as difference between the spot price at Otahuhu and the spot price at Benmore increases.

keep WIBR the same or to increase it in future. We conclude that WIBR will continue at similar levels into the foreseeable future, although the associations are likely to change over time as grid upgrades are completed.

However, there is a distinct pattern of the frequency of high price spread events across the day, which is linked to uncertainty in demand combined with the time of day at which circuit and generation outages commence. A potentially aggravating factor, which has not been considered in this study, is the role of wind generation, which adds to the uncertainty around demand forecasts in future. The frequency of events peaks just after the morning demand peak, which is a function of uncertainty around demand at this time of day, in particular. It may be possible to reduce WIBR by reducing this uncertainty through improvements in the market's forecasting processes. Or even, if the benefits of reducing WIBR outweigh the costs of changing the pricing process, by changing the way that prices are formed.

7.1 Further Work

The dynamic effects associated with the morning peak raise a number of questions around the basic functioning of the market. For example:

- Are transmission and generation outages scheduled to start at the best times? Could start times be staggered?
- Do traders have all of the information they need with respect to the uncertainty surrounding demand, capacity margin, and the impact of outages?
- Could the various schedules of forecast prices be improved?
- Does the way that prices are formed give the best trade-off between transparency and the ability to manage basis risk?
- Is the way that SPD models transmission constraints the best trade-off between managing the grid within limits and signaling the likelihood of a SWE to the market?
- Does two hour gate closure limit the ability of traders to respond to situations in an optimal fashion?

We note the Authority is already pursuing work on improving price formation, which will likely extend to some of the items listed above. We recommend that the scope of this work be reviewed to determine whether or not it should include a measureable reduction of WIBR as an explicit goal.

A key advantage of making improvements in demand forecasting and the pricing process, as opposed to adding hedging instruments to the market, is that it should be possible to observe changes in the frequency of high price spread events across the day if the improvements make a significant difference to the ability of traders to anticipate and manage circumstances which could create WIBR. It may also prove to be more cost-effective to improve existing processes than to introduce new hedges, for example, by reducing the number of new hedges that are required.

In addition, with the introduction of new pricing schedules from the end of June 2012, it is recommended that the impact of these new schedules on WIBR be assessed as to their impact on the frequency of high price spread events across the day. We understand that the accuracy of demand bids has not been monitored for a number of years, which is

likely to have reduced the ability of the PDS to predict demand, especially leading into the morning peak, so the introduction of two new schedules, assuming they forecast demand better than the PDS, may have a measureable impact on WIBR across the day.

8 Appendix 1 – Nodes and Clusters

The following nodes were used in the study. Each node represents all the nodes of the same voltage at a substation.

NI Voltage	Nodes				SI Voltage	Nodes	
ALB033	HAY110	MER033	PEN033	TNG050	ABY011	EDN033	OTI011
ALB110	HAY220	MGM033	PEN110	TRK011	ADD011	FKN033	PAL033
ARA220	HEN033	MHO033	PEN220	TRK220	ADD066	GOR033	PAP011
ARI110	HEN220	MLG011	PNI033	TUI011	APS011	GYM066	PAP066
ATI220	HEP033	MLG033	PPI220	TUI110	ARG110	HKK066	RFN110
BOB033	HIN033	MNG033	PRM033	TWC220	ASB033	HOR033	ROX110
BOB110	HLY033	MNG110	RDF033	TWH033	ASB066	HOR066	ROX220
BPE033	HLY220	MNI011	RDF220	UHT033	ASY011	HWB033	SBK033
BPE050	HTI033	MPE033	ROS110	WAI011	ATU110	HWB220	SDN033
BPE220	HUI033	MST033	ROS220	WDV011	AVI220	INV033	SPN033
BRB033	HWA033	MTI220	ROT011	WDV110	BAL033	INV220	SPN066
BRK033	HWA110	MTM033	ROT033	WEL033	BDE011	ISL033	STK033
CBG011	KAW011	MTN033	ROT110	WGN033	BEN110	ISL066	STK220
CPK011	KAW110	MTO033	RPO220	WHI011	BEN220	ISL220	STU011
CPK033	KAW220	MTR033	SFD033	WHI220	BLN033	KAI011	TIM011
CST033	KEN033	NAP220	SFD220	WHU033	BPD110	KIK011	TKA011
DAR011	KIN011	NPK033	SVL033	WIL033	BPT110	KKA033	TKA033
DVK011	KIN033	NPL033	SWN220	WIR033	BRY011	KUM066	TKB220
EDG033	KMO033	NPL110	TAK033	WKM220	BRY066	MAN220	TMK033
FHL033	KOE033	NPL220	TGA011	WKO033	BWK110	MCH011	TWI220
GFD033	KPA110	OHK220	TGA033	WPA220	CLH011	MLN066	TWZ033
GIS050	KPO110	OKI011	TKH011	WRA011	CML033	MOT011	WPR033
GLN033	KPU066	OKI220	TKR033	WRK033	COB066	MP1066	WPR066
GYT033	KTA033	OKN011	TKU033	WRK220	COL011	NMA033	WPT011
HAM011	KWA011	ONG033	TKU220	WTU033	COL066	NSY033	WTK011
HAM033	LFD110	OPK033	TMI033	WVY011	CUL033	OAM033	WTK033
HAM050	LTN033	OTA110	TMN050	WWD110	CYD033	OHA220	WTK220
HAM220	MAT110	OTA220	TMU011		CYD220	OHB220	
HAY011	MDN110	OWH011	TMU110		DOB033	OHC220	
HAY033	MDN220	PAK033	TNG011		DOB066	ORO110	

8.1 Cluster Listings

In the cluster listings below, the following voltages codes are used:

0 = 0111 = 1102 = 220

2 = 2203 = 033

5 = 050

6 = 066

For example, OTA2 refers to the two 220 kV nodes at Otahuhu, OTA2201 and OTA2202.

The clusters listed below are based on half hourly prices over the period 1-Jan-07 to 31-Dec-11 inclusive. If using these clusters when developing or reviewing hedging strategy, then note that cluster membership is likely to change over time. It is also important to work with the clusters that are relevant to your organisation's risk preferences.

8.2 Clusters Formed with Correlation = 0.7

NI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		SI	1	2		4	5	6
																			19				3			
0.7	ALB1	BPE2	ARA2	ARA2	ALB1	СРКО	ARA2	ALB1	FHL3	ARA2	ARI1	DVK0	ARI1	MGM3	WPW3	WIL3	TNG5	RDF3	LFD1	0.7	ABYO	BPD1	HWB2	BAL3	BPD1	BPD1
	ALB3	BPE3	ATI2	ATI2	ALB3	CPK3	MT12	ALB3	GIS5	AT12	HTI3	WDV0	HTI3	MST3							ADD0	CYD2	HWB3	BDE0	COB6	KUM6
	BOB1	BPE5	EDG3	EDG3	BRK3	GFD3	NAP2	BRK3	TUIO	TKU2	KINO	WDV1	TNG0								ADD6	CYD3	INV2	BWK1	MOT0	MLN6
	BOB3	BRK3	KAWD	KAWD	CST3	GYT3	OKI0	CST3	TUI1	TKU3	KIN3										APS0	HWB2	INV3	EDN3	MPI6	SPN6
	BRB3	CBG0	KAW1	KAW1	HAM2	HAYO	OKI2	HAM2	WRAD												ARG1	HWB3	MAN2	GOR3		
	DARO	CST3	KAW2	KAW2	HAM3	HAY1	PP12	HAM3													ASB3	INV2	NMA3			
	GLN3	HAMO	KM03	KM03	HAMS	HAY3	RDF2	HAMS													ASB6	INV3	PAL3			
	HEN2	HAM2	MAT1	MAT1	HUI3	KWA0	RPO2	WGN3													ASY0	MAN2	ROX1			
	HEN3	HAM3	MTI2	MTI2	HWA1	MLGO	TKU2														ATU1	NMA3	SDN3			
	HEP3	HAMS	MTM3	MTM3	HWA3	MLG3	TKU3														AVI2	PAL3	TW12			
	HLY2	HAY2	NAP2	NAP2	KPA1	MST3															BEN1	ROX2				
	HLY3	HIN3	OHK2	OHK2	MNIO	PNI3															BEN2	SDN3				
	KEN3	HUI3	OKID	OKID	NPL1	PRM3															BLN3	TW12				
	KDE3	HWA1	OKI2	OKIZ	NPL2	TKR3															BPD1					
	KTA3	HWAI	OWH0	OWHO	NPL2 NPL3	UHT3															BPD1 BPT1					
	MDN1	KPA1	PPI2	PPI2	OPK3	WWD1															BRYO					
	MDN2	KPO1	RDF2	RDF2	SFD2																BRY6					
	MER3	KPU6	ROTO	ROTO	SFD3																CLH0					
	MNG1	LTN3	ROT1	ROT1	TMN5																CML3					
	MNG3	MHO3	ROT3	WHIO	WVY0																COLO					
	MPE3	MNIO	TGAD	WHI2																	CO16					
	MTO3	MTN3	TGA3	WKM2																	CUL3					
	MTR3	NPL1	ткно	WPA2																	DOB3					
	NPK3	NPL2	TMI3	WRK2																	DOB6					
	OKN0	NPL3	TRKO	WRK3																	FKN3					
	ONG3	OPK3	TRK2	WTU3																	GYM6					
	OTA1	SFD2	WAID																		HKK6					
	OTA2	SFD3	WHIO																		HOR3					
	PAK3	TMN5	WHI2																		HOR6					
	PEN1	TMU0	WKM2																		15L2					
	PEN2	TMU1	WRK2																		I5L3					
	PEN3	TWC2	WRK3																		ISL6					
	ROS1	WGN3	WTU3																		KAID					
	ROSZ	WHU3																			KIKD					
	SVL3	WK03																			ККАЗ					
	SWNZ	WVYO																			MCHO					
	TAK3	WVf0																			MLN6					
																					NSY3					
	TMN5																									
	TWH3																				OAM3					
	WEL3																				OHA2					
	WIR3																				OHB2					
																					OHC2					
																					ORO1					
																					OTIO					
																					PAPO					
																					PAP6					
																					RFN1					
																					SBK3					
																					SPN3					
																					SPN6					
																					STK2					
																					STK3					
																					STU0					
																					TIMO					
																					TKAD					
																					TKA3					
																					TKB2					
																					TMK3					
																					TWZ3					
																					WPR3					
																					WPR3 WPR6					
																					WPR6 WPT0					
																					WTK0 WTK2					
																					WTK3					

8.3 Clusters Formed with Correlation = 0.8

					-	-	-	-	-																						-		-
NI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	SI	1	2	3	4	5	6	7
	ALB1	BPE2	ARA2	ATI2	ALB1	ARA2	CPK0	ARA2	ARA2	GFD3	BOB1	FHL3	ALB1	DVK0	RPO2	HTI3	ARI1	RPO2	ARI1	WPW3	WIL3	TNG5	RDF3	MGM3	LFD1	0.8	ABY0	ABY0	BPD1	HWB2	BAL3	BPD1	BPD1
	ALB3	BPE3	ATI2	EDG3	ALB3	ATI2	CPK3	ATI2	ATI2	GYT3	BOB3	GIS5	ALB3	WDV0	TKU2	NPK3	KIN0	TNG0	HTI3								ADD0	ADD0	CYD2	HWB3	BDE0	COB6	KUM6
	BOB1	BPE5	EDG3	KAW0	CST3	EDG3	GFD3	EDG3	EDG3	HAY0	HLY3	TUIO	BOB1	WDV1	TKU3	ONG3	KIN3										ADD6	ADD6	CYD3	INV2	BWK1	MOT0	MLN6
	BOB3	BRK3	KAW0	KAW1	HAM2	KAW0	GYT3	KAW0	KAW0	HAY1	MER3	TUI1	BOB3														APS0	APS0	HWB2	INV3	EDN3	MPI6	SPN6
	BRB3	CBG0	KAW1	KAW2	HAM3	KAW1	HAY0	KAW1	KAW1	HAY3	MTR3	WRA0	TMN5														ARG1	ARG1	HWB3	MAN2	GOR3		
	DARO	CST3	KAW2	KMO3	HAM5	KAW2	HAY1	KAW2	KAW2	MLG0	NPK3																ASB3	ASB3	INV2	NMA3			
	GLN3	HAM0	KMO3	MAT1	HUI3	KMO3	HAY3	KMO3	KMO3	MLG3	OKN0																ASB6	ASB6	INV3	PAL3			
	HEN2	HAM2	MAT1	MTM3	HWA1	MAT1	KWA0	MAT1	MAT1	MST3	WIR3																ASY0	ASY0	MAN2	ROX1			
	HEN3	HAM3	MTI2	NAP2	HWA3	MTI2	MLG0	MTI2	NAP2	PNI3																	ATU1	ATU1	NMA3	SDN3			
	HEP3	HAM5	NAP2	OHK2	KPA1	NAP2	MLG3	NAP2	OHK2	PRM3																	AVI2	BEN1	PAL3	TWI2			
	HLY2	HAY2	OHK2	OWH0	MNIO	OHK2	PNI3	OHK2	OWH0	TKR3																	BEN1	BEN2	ROX2				
	HLY3	HIN3	OKI0	ROT0	NPL1	OKI0	PRM3	TKH0	ткно	UHT3																	BEN2	BLN3	SDN3				
	KEN3	HUI3	OKI2	ROT1	NPL2	OKI2	TKR3	TRK2	TRK2																		BLN3	BRYO	TWI2				
	KOE3	HWA1	PPI2	ROT3	NPL3	PPI2	UHT3	WAI0	WAI0																		BPD1	BRY6					
	KTA3	HWA3	RDF2	TGA0	OPK3	RDF2	WWD1																				BPT1	CLH0					
	MDN1	KPA1	ткно	TGA3	SFD2	TKU2																					BRY0	CML3					
	MDN2	KPO1	WHI0	TKH0	SFD3	ткиз																					BRY6	COLO					
	MER3	KPU6	WHI2	TMI3	TMN5																						CLH0	COL6					
	MNG1	LTN3	WKM2	TRKO																							CML3	CUL3					
	MNG3	MH03	WPA2	TRK2																							COLO	DOB3					
	MPE3	MNIO	WRK2	WAIO																							COL6	DOB6					
	MT03	MTN3	WRK3																								CUL3	FKN3					
	MTR3	NPL1	WTU3																								DOB3	GYM6					
	NPK3	NPL2	W103																								DOB5 DOB6	HKK6					
	OKN0	NPL3																									FKN3	HOR3					
	OTA1	OPK3																									GYM6	HOR6					
	OTA1 OTA2	SFD2																									HKK6	ISL2					
	PAK3	SFD2 SFD3																									HOR3	ISL2					
	PARS PEN1	TMN5																									HOR6	ISL6					
	PEN1 PEN2	TMU0																									ISL2	KAIO					
																												KIKO					
	PEN3 ROS1	TMU1 TWC2																									ISL3 ISL6	KIKU KKA3					
	ROS1 ROS2	WGN3																									KAIO	MCH0					
	SVL3	WGN3 WHU3																									KIKO	MLN6					
		WKO3																															
	SWN2 TAK3	WK03 WVY0																									KKA3 MCH0	NSY3 OHA2					
		WVYU																															
	TWH3																										MLN6	OHB2					
	WEL3																										OAM3	OHC2					
																											OHA2	ORO1					
																											OHB2	OTIO					
																											OHC2	PAPO					
																											ORO1	PAP6					
																											OTIO	RFN1					
																											PAPO	SBK3					
																											PAP6	SPN3					
																											RFN1	SPN6					
																											SBK3	STK2					
																											SPN3	STK3					
																											SPN6	TIMO					
																											STK2	TKB2					
																											STK3	TMK3					
																											STU0	TWZ3					
																											TIM0	WPR3					
																											TKA0	WPR6					
																											TKA3	WPT0					
																											TKB2						
																											TMK3						
																											TWZ3						
																											WPR3						
																											WPR6						
																											WPTO						
																											WTK0						
																											WTK2						
																											WTK3						

8.4 Clusters Formed with Correlation = 0.9

ALE ALE ALE ALE ALE ALE ALE ALE ALE ALE	1 ALB1 ALB3 BRB3 DAR0 GLN3 HEN2 HEN3 HEP3 HLY2 HLY3 KC03 KC03 KC03 KC03 MDN1 MDN2 MDN1 MDN2 MNG1 MNG3 MP3 MTO3	2 CBG0 CST3 HAM0 HAM3 HAM3 HIN3 HUI3 KP41 KP46 MNI0 NPL1 NPL2 NPL3 OPK3	3 BPE2 BPE3 BRK3 CST3 HUI3 HWA1 HWA1 LTN3 MHO3 MNI0 MTN3	4 ARA2 ATI2 EDG3 KAWD KAW1 KAW2 KM03 MAT1 NAP2 OHK2 OKI0	5 BPE2 BPE3 BPE5 BRK3 CST3 HAY2 HUI3 HWA1 HWA1 HWA3 KPA1	6 EDG3 KAW0 KAW1 KAW2 KM03 MAT1 MTM3 NAP2 OWH0	7 BPE2 BPE3 BPE5 BRK3 CST3 HUI3 KPA1 LTN3	8 CPK0 CPK3 GFD3 HAY0 HAY1 HAY3 KWA0	9 ARA2 ATI2 KAW1 KMO3 MAT1 MTI2	10 ATI2 EDG3 KAWD KAW1	11 ARA2 ATI2 EDG3	12 BPE2 BPE3	13 BOB1 BOB3	14 FHL3	15 MTI2	16	17	18	19 MTR3	20 ARI1	21 GYT3	22 HTI3	23 LFD1	24 MGM3	25 RDF3		
ALL BAR BAR GLA HEN HEN HEN HEN HEN HEN HEN HEN HEN HEN	ALB3 BRB3 DAR0 GLN3 HEN2 HEN3 HEP3 HLV2 HLV3 KEN3 KO3 KTA3 MDN1 MDN2 MNG1 MNG3 MPE3	CST3 HAM0 HAM2 HAM3 HM3 HU3 KP41 KP06 MN00 NPL1 NP2 NP43	BPE3 BPE5 BRK3 CST3 HUI3 HWA1 HWA3 KPA1 LTN3 MHO3 MNI0 MTN3	ATI2 EDG3 KAWD KAW1 KAW2 KMO3 MAT1 NAP2 OHK2 OKID	BPE3 BPE5 BRK3 CST3 HAY2 HUI3 HWA1 HWA3	KAWO KAWI KAWZ KMO3 MATI MTM3 NAP2	BPE3 BPE5 BRK3 CST3 HUI3 KPA1	CPK3 GFD3 HAY0 HAY1 HAY3	ATI2 KAW1 KMO3 MAT1	EDG3 KAWD KAW1	ATI2 EDG3	BPE3			MTI2				MTR3	ARI1	GYT3	HTI3	LFD1	MGM3	RDF3	RPO2	
866,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 74,00	BRB3 DAR0 GLN3 HEN2 HEN3 HEP3 HLV2 HLV3 KEN3 KOB3 MDN1 MIDN2 MING1 MNG3	HAM0 HAM2 HAM3 HM3 HU3 KP41 KP01 KP06 MN00 NPL1 NP2 NP3	BPES BRK3 CST3 HUI3 HWA1 HWA3 KPA1 LTN3 MHO3 MNI0 MTN3	EDG3 KAWD KAW1 KAW2 KM03 MAT1 NAP2 OHK2 OKI0	BPES BRK3 CST3 HAY2 HUI3 HWA1 HWA1	KAW1 KAW2 KMO3 MAT1 MTM3 NAP2	BPE5 BRK3 CST3 HUI3 KPA1	GFD3 HAYD HAY1 HAY3	KAW1 KMD3 MAT1	KAWD KAW1	EDG3		BOB3			ALB1	DVK0	ARI1									2 Т
DAPA 04 10 10 10 10 10 10 10 10 10 10 10 10 10	DARD GLN3 HEN2 HEN3 HEP3 HLY2 HLY3 KEN3 KOE3 KTA3 MDN1 MDN2 MNG1 MNG3 MPE3	HAM2 HAM3 HIN3 HUI3 KPA1 KPO1 KPU6 MNI0 NPL1 NPL2 NPL3	BRK3 CST3 HUI3 HWA1 HWA3 KPA1 LTN3 MHO3 MNI0 MTN3	KAWD KAW1 KAW2 KM03 MAT1 NAP2 OHK2 OKI0	BRK3 CST3 HAY2 HUI3 HWA1 HWA3	KAW2 KMO3 MAT1 MTM3 NAP2	BRK3 CST3 HUI3 KPA1	HAYD HAY1 HAY3	KMO3 MAT1	KAW1				GIS5	TKU2	ALB3	WDV0	KINO	NPK3	HTI3	MST3	ONG3					
GLM HERE HERE HERE HERE HERE HERE HERE HERE	GLN3 HEN2 HEN3 HLY2 HLY2 KEN3 KDE3 KTA3 MDN1 MDN2 MNG1 MNG1 MNG3 MPE3	HAM3 HAM5 HIN3 HUI3 KPA1 KPU6 MNI0 NPL1 NPL2 NPL3	CST3 HUI3 HWA1 HWA3 KPA1 LTN3 MHO3 MNI0 MTN3	KAW1 KAW2 KMO3 MAT1 NAP2 OHK2 OKID	CST3 HAY2 HUI3 HWA1 HWA3	KMO3 MAT1 MTM3 NAP2	CST3 HUI3 KPA1	HAY1 HAY3	MAT1			BPE5	HLY3	TUIO	TKU3	BRB3	WDV1	KIN3	OKN0								
	N2 P3 Y2 Y3 K3 E3 K3 N1 N2 G1 G3 E3	HAMS HIN3 HUI3 KPA1 KPU6 MNI0 NPL1 NPL2 NPL3	HUI3 HWA1 HWA3 KPA1 LTN3 MHO3 MNI0 MTN3	KAW2 KM03 MAT1 NAP2 OHK2 OKID	HAY2 HUI3 HWA1 HWA3	MAT1 MTM3 NAP2	HUI3 KPA1	HAY3			KAWO	HAY2	MER3	TUI1	WKM2	TMN5											
HER	HEN3 HEP3 HLY2 HLY3 KEN3 KOE3 KTA3 MDN1 MDN1 MN03 MNG3 MPE3	HIN3 HUI3 KPA1 KP01 KPU6 MNI0 NPL1 NPL2 NPL3	HWA1 HWA3 KPA1 LTN3 MH03 MNI0 MTN3	KMO3 MAT1 NAP2 OHK2 OKI0	HUI3 HWA1 HWA3	MTM3 NAP2	KPA1			KAW2 KMD3	KAW1 KAW2	LTN3 TWC2	WIR3	WRAD	WPA2												
HEF HLSL KEN KON KON KON KON KON KON KON KON KON KO	HEP3 HLY2 HLY3 KEN3 KOE3 KTA3 MDN1 MNN2 MNN2 MNG3 MPE3	HUI3 KPA1 KPO1 KPU6 MNI0 NPL1 NPL2 NPL3	HWA3 KPA1 LTN3 MHO3 MNI0 MTN3	MAT1 NAP2 OHK2 OKID	HWA1 HWA3	NAP2			NAP2	MAT1	KM03	WVYD															
нц, нц, нц, кол мол мол мол мол мол мол мол мол мол м	HLY2 HLY3 KEN3 KOE3 KTA3 MDN1 MDN2 MNG1 MNG3 MPE3	KPA1 KPO1 KPU6 MNI0 NPL1 NPL2 NPL3	KPA1 LTN3 MHO3 MNI0 MTN3	NAP2 OHK2 OKID	HWA3			MLG0	OHK2	NAP2	MAT1																
нці, коло коло моло моло моло моло моло моло	HLY3 KEN3 KTA3 MDN1 MDN2 MNG1 MNG3 MPE3	KPO1 KPU6 MNI0 NPL1 NPL2 NPL3	LTN3 MHO3 MNI0 MTN3	OHK2 OKID			MHO3	MLG3	OKIO	ткно	NAP2																
KEN KOL KUTA MODINA MANA MANA MANA MANA MANA MANA MANA M	KEN3 KOE3 KTA3 MDN1 MDN2 MNG1 MNG3 MPE3	KPUG MNID NPL1 NPL2 NPL3	MHO3 MNIO MTN3	OKID		ROTO	MNIO	PNI3	OKIZ	TRK2	WAID																
KTAA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODIONA MODION MODIONA	KTA3 MDN1 MDN2 MNG1 MNG3 MPE3	NPL1 NPL2 NPL3	MTN3		LTN3	ROT1	MTN3	PRM3	PP12	WAID																	
MODI MODI MINIMA MINIMA MINIMA MINIMA PALINA MINIMA PALINA MINIMI	MDN1 MDN2 MNG1 MNG3 MPE3	NPL2 NPL3		OKI2	MNID	ROT3	NPL1	TKR3	RDF2																		
MDBM MNNNM MPF MTT OTA OTA OTA OTA OTA OTA OTA SSUE SSUE SSUE SSUE SSUE SSUE SSUE SSU	MDN2 MNG1 MNG3 MPE3	NPL3		PPI2	NPL1	TGAD	NPL2	UHT3	WKM2																		
MININ MININ MITE MITE MITE MITE MITE MITE MITE MITE	MNG1 MNG3 MPE3		NPL1	RDF2	NPL2	TGA3	NPL3	WWD1	WPA2																		
MNNIN MPPH MTT MTT MTT MTT PABA PEN RO OTA PEN RO SVU RO SVU RO SV SVU RO SVU RO	MNG3 MPE3	OPK3	NPL2	WHID	NPL3	ткно	ОРКЗ																				
MPPI MITTE OTA PARAMAN PENN PENN PENN PENN PENN PENN PENN PE	MPE3		NPL3	WHI2	OPK3	TMI3	SFD2																				
MITCOM MITTINE PRANCE PROVIDE		SFD2 SFD3	OPK3 SFD2	WRK2 WRK3	SFD2 SFD3	TRKD TRK2	SFD3 TWC2																				
MITH OTAT PARM PENN PENN PENN PENN PENN PENN PENN PEN		TMU0	SFD2 SFD3	WRK3 WTU3	TWC2	WAID	WGN3																				
OTA OTA PAR PEN PEN PEN R0:0 SVU R0:0 SVU TARA R0:0 SVU TARA R0:0 SVU TARA R0:0 SVU R0:0 R0:0 SVU R0:0 R0:0 SVU SVU R0:0 SVU SVU R0 SVU SVU R0 SVU SVU SVU SVU SVU SV	MTR3	TMU1	TWC2																								
PARM PENN PENN RODUS SVLU SVLV TAM WEE T ADD ADD ADD ADD ADD ADD ADD ADD ADD A	OTA1	WHU3																									
PARM PENN PENN RODUS SVLU SVLV TAM WEE T ADD ADD ADD ADD ADD ADD ADD ADD ADD A	OTA2	WKO3																									
PEM PEM RO:3 SWU SWU TABA ADD ADD ADD ADD ADD ADD ADD ADD ADD	РАКЗ																										
PEN RO: SVU SVU SVU VEI VEI ACCO ACCA ACCA ACCA ACCA ACCA ACCA ACC	PEN1																										
ROS ROS SVU SVU TABLE TABLE TABLE SVU TABLE	PEN2																										
ROSSULTAR	PEN3																										
SVL SWM TANK WEI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																											
SWM TARA TARA TARA WEN TARA SUB ADD ADD ADD ADD ADD ADD ADD ADD ADD AD	ROSZ SVL3																										
TARK TWWEI 11 ADD ADD ADD ADD ADD ADD ADD ADD ADD	SWN2																										
VIET ADD ADD ADD ASE ASE ASE ASE ASE ASE ASE ASE ASE ASE	ТАКЗ																										
1 ADD ADD ASS ASS ASS ASS ASS ASS ASS ASS	TWH3																										
ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC	WEL3																										
ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC		2	3	4	5	6	7	8	9	10	11	12	13	14	15												
ADD ADD ASE ASE ASE ASE ASE ASE ASE ASE ASE ASE	ADD0	ADDO	AVIZ	4 ADD0	ARG1	BPD1	ASB3	BAL3	DOB3	ABYO	COB6	HWB3	BAL3	TKA0	KUM6												
APS ASE ASE ASY BRY CLH CM CO CO CO CO CO CO CO CO CO CO CO CO CO	ADD6	ADD6	BEN1	ADD6	ATU1																						
ASE ASY BR\ CLH CMH COL COL COL COL COL COL COL COL COL COL	APSO	APSO	BEN2			CYD2	ASB6	BDE0	DOB6	MLN6	MOTO	PAL3	BWK1	ТКАЗ													
ASY BRIT CLH COL COL COL COL FKIN HOI BLL BLL BLL BLL BLL BLL BLL BLL BLL BL	ASB3	ASY0		ASB3	BLN3	CYD2 CYD3	ASB6 BEN1	BDE0 EDN3	DOB6 GYM6	MLN6 SPN6	MOTO MPI6	PAL3 ROX1		ТКАЗ													
BRID BRID CLH COL COL COL COL FKIN HOI BLL BLL BLL BLL BLL BLL BLL BLL BLL BL	ASB6		BPD1	ASB6	BLN3 CUL3	CYD3 HWB2	BEN1 BEN2							TKA3													
BRN CLH CMU COU COU FKN HOI BLL BLL BLL BLL BLL BLL BLL BLL BLL BL		BRYD	BPT1	ASB6 ASY0	BLN3 CUL3 KIKO	CYD3 HWB2 INV2	BEN1 BEN2 CML3	EDN3	GYM6					тказ													
CLH COL RON HOI ISL ISL ISL ISL ISL ISL ISL ISL SSL SS	ASYO	BRY6	BPT1 CML3	ASB6 ASY0 BEN1	BLN3 CUL3 KIKO KIKA3	CYD3 HWB2 INV2 INV3	BEN1 BEN2 CML3 FKN3	EDN3	GYM6					TKA3													
CMI COL RKN HOI ISL ISL ISL ISL ISL ISL ISL ISL SSL SS	BRYO	BRY6 CLH0	BPT1 CML3 FKN3	ASB6 ASY0 BEN1 BEN2	BLN3 CUL3 KIK0 KKA3 MCH0	CYD3 HWB2 INV2 INV3 MAN2	BEN1 BEN2 CML3 FKN3 OHA2	EDN3	GYM6					тказ													
COL PKN HOI ISL ISL ISL ISL ISL ISL ISL ISL SS KAI PAF PAF SSK		BRY6	BPT1 CML3	ASB6 ASY0 BEN1	BLN3 CUL3 KIKO KIKA3	CYD3 HWB2 INV2 INV3	BEN1 BEN2 CML3 FKN3	EDN3	GYM6					тказ													
FKN HOI ISL ISL KAI OHJ OTI PAF PAF SBK	BRYO BRY6	BRY6 CLH0 HOR3	BPT1 CML3 FKN3 OAM3	ASB6 ASY0 BEN1 BEN2 CML3	BLN3 CUL3 KIK0 KKA3 MCH0 OR01	CYD3 HWB2 INV2 INV3 MAN2 NMA3	BEN1 BEN2 CML3 FKN3 OHA2 OHB2	EDN3	GYM6					тказ													
HOI HOI ISL ISL KAI OH/ OH/ PAF PAF SBK	BRYO BRY6 CLH0	BRY6 CLH0 HOR3 HOR6	BPT1 CML3 FKN3 OAM3 OHA2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3	BLN3 CUL3 KIKO KKA3 MCH0 ORO1 RFN1	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2	BEN1 BEN2 CML3 FKN3 OHA2 OHB2 OHC2	EDN3	GYM6					тказ													
HOI ISE ISE KAI MLP OHJ OTI PAF SBK	BRYO BRY6 CLH0 CML3 COL0 COL6	BRY6 CLH0 HOR3 HOR6 ISL2 ISL3 ISL6	BPT1 CML3 FKN3 OAM3 OHA2 OHA2 OHB2 OHC2 STU0	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCH0 OR01 RFN1 STK2	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
ISL ISL KAI OH/ OH/ PAF PAF	BRYO BRYG CLHO CML3 COLO COL6 FKN3	BRY6 CLH0 HOR3 HOR6 ISL2 ISL3 ISL6 KAI0	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
ISL ISL KAI MLP OHJ OTI PAF SBK	BRYO BRYG CLHO CML3 COLO COLO FKN3 HOR3	BRY6 CLH0 HOR3 HOR6 ISL2 ISL3 ISL6 KAJ0 MLN6	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
ISU KAI OHJ OTI PAF SBK	BRYO BRYG CLHO CML3 COLO COL6 FKN3 HOR3 HOR5	BRY6 CLH0 HOR3 HOR6 ISL2 ISL3 ISL6 KAI0 MLN6 NSY3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
KAI MLP OH/ OTI PAF PAF SBK	BRYG CLHO CML3 COLO CDL6 FKN3 HOR5 HOR5 ISL2	BRY6 CLH0 HOR3 HOR6 ISL2 ISL5 KAI0 MLN6 NSY3 OTI0	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
MLP OH/ OTI PAF SBK	BRY0 BRY6 CLH0 CML3 COL0 COL6 FKN3 HOR3 HOR5 SL2 SL3	BRY6 CLH0 HOR3 HOR6 ISL2 ISL3 ISL6 KAI0 MLN6 NSY3 OTI0 PAP0	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
OTI PAF PAF SBK	BRYG CLHO CML3 COLO CDL6 FKN3 HOR5 HOR5 ISL2	BRY6 CLH0 HOR3 HOR6 ISL2 ISL5 KAI0 MLN6 NSY3 OTI0	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
PAF PAF SBK	BRY0 BRY6 CLH0 CML3 COL0 COL6 FKN3 HOR6 ISL2 ISL3 ISL6	BRYG CLHO HOR3 HOR6 ISL2 ISL3 ISL6 KAIO MLN6 NSY3 OTIO PAP0 PAP6	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
PAF SBK	BRY0 BRY6 CLH0 CML3 COL0 COL6 FKN3 HOR3 HOR6 SL2 SL3 SL6 KAI0	8RY6 CLH0 HOR3 ISL2 ISL3 ISL6 KAI0 MLN6 NSY3 OTI0 PAP0 SBK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
SBK	BRY0 BRY6 CLH0 CML3 COL0 COL6 FKN3 HOR3 HOR3 ISL2 ISL3 ISL6 KAI0 MLN6 OHA2 OTI0	88Y6 CLH0 HOR3 ISL2 ISL3 ISL6 KAI0 MLN6 NSY3 O'TI0 PAP0 PAP6 S8K3 SPN6 TIM0	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
	BRY0 BRY6 CLH0 CML3 COL0 COL6 FKN3 HOR6 ISL2 ISL3 ISL6 KAI0 MLN6 OHA2 OTI0 PAP0	88Y6 CLH0 HOR3 ISL3 ISL5 KAI0 MUN6 NSY3 OTI0 PAP6 S8K3 SPN3 SPN3 SPN3 TIM0 TIMK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
	BRY0 BRY6 CLH0 CML3 COL0 FKN3 HOR8 ISL2 ISL3 ISL6 KA0 OHA2 OHA2 OHA2 PAP0 PAP0	88Y6 CLH0 HOR3 HOR2 ISL2 ISL3 ISL6 KAI0 MUN6 NSY3 OTI0 PAP0 PAP0 PAP0 PAP0 S8K3 SPN3 SPN6 TIM0 TIMK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
	BRY0 BRY6 CLH0 CML3 CDL0 COL0 COL0 FKN3 HOR6 ISL2 ISL3 ISL6 KAI0 MLN6 OHA2 OTI0 PAP0 PAP5 SBK3	88Y6 CLH0 HOR3 ISL3 ISL5 KAI0 MUN6 NSY3 OTI0 PAP6 S8K3 SPN3 SPN3 SPN3 TIM0 TIMK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
	BRY0 BRY6 CLH0 COL0 COL0 FKN3 HOR3 HOR6 5L2 SL6 SL6 SL6 KA0 OHA2 OT10 PAP6 SR3 SPN3	88Y6 CLH0 HOR3 HOR2 ISL2 ISL3 ISL6 KAI0 MUN6 NSY3 OTI0 PAP0 PAP0 PAP0 PAP0 S8K3 SPN3 SPN6 TIM0 TIMK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
	BRY0 BRY6 CLH0 CMU3 COL0 COL6 RKN3 HOR6 SL2 SL3 SL2 SL3 SL2 SL3 SL2 SL3 SL2 SL3 SL2 SL3 SL2 SL3 SL3 SL3 SL3 SL3 SL3 SL3 SL3 SL3 SL3	88Y6 CLH0 HOR3 HOR2 ISL2 ISL3 ISL6 KAI0 MUN6 NSY3 OTI0 PAP0 PAP0 PAP0 PAP0 S8K3 SPN3 SPN6 TIM0 TIMK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
	BRY0 BRY6 CLH0 COL3 COL0 COL6 FKN3 HOR3 BL2 SL3 SL5 SL4 KA0 OHA2 OHA2 OHA2 SPN5 SPN5 TIM0	88Y6 CLH0 HOR3 HOR2 ISL2 ISL3 ISL6 KAI0 MUN6 NSY3 OTI0 PAP0 PAP0 PAP0 PAP0 S8K3 SPN3 SPN6 TIM0 TIMK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
	BRY0 BRY6 CLH0 CMU3 COL0 COL6 RKN3 HOR6 SL2 SL3 SL2 SL3 SL2 SL3 SL2 SL3 SL2 SL3 SL2 SL3 SL2 SL3 SL3 SL3 SL3 SL3 SL3 SL3 SL3 SL3 SL3	88Y6 CLH0 HOR3 HOR2 ISL2 ISL3 ISL6 KAI0 MUN6 NSY3 OTI0 PAP0 PAP0 PAP0 PAP0 S8K3 SPN3 SPN6 TIM0 TIMK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TKA3													
	BRY0 BRY6 CLH0 COL0 COL6 FKN3 HOR6 ISL2 ISL6 ISL6 ISL6 KAI0 OHA2 OTI0 PAP6 SBK3 SPN3 SPN3 SPN3 TIM0 TKB2	88Y6 CLH0 HOR3 HOR2 ISL2 ISL3 ISL6 KAI0 MUN6 NSY3 OTI0 PAP0 PAP0 PAP0 PAP0 S8K3 SPN3 SPN6 TIM0 TIMK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TRA3													
WP	BRY0 CH0 CM13 COL0 COL0 FXX3 K073 K073 K073 S15 S15 S15 S15 S15 S15 S15 S15 S15 S15	88Y6 CLH0 HOR3 HOR2 ISL2 ISL3 ISL6 KAI0 MUN6 NSY3 OTI0 PAP0 PAP0 PAP0 PAP0 S8K3 SPN3 SPN6 TIM0 TIMK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TRAI													
	88Y0 6013 COL0 COL6 RO13 COL0 RO13 HOR3 HOR3 HOR3 SIS SIS SIS SIS SIS SIS SIS SIS SIS SI	88Y6 CLH0 HOR3 HOR2 ISL2 ISL3 ISL6 KAI0 MUN6 NSY3 OTI0 PAP0 PAP0 PAP0 PAP0 S8K3 SPN3 SPN6 TIM0 TIMK3	BPT1 CML3 FKN3 OAM3 OHA2 OHB2 OHC2 STU0 TKB2 TWZ3 WTK0 WTK2	ASB6 ASY0 BEN1 BEN2 CML3 FKN3 OHA2 OHC2 TKB2	BLN3 CUL3 KIKO KKA3 MCHO ORO1 RFN1 STK2 STK3	CYD3 HWB2 INV2 INV3 MAN2 NMA3 ROX2 SDN3	BEN1 BEN2 CML3 FKN3 OHA2 OHA2 OHA2 OHC2 TKB2	EDN3	GYM6					TRAI													

8.5 Clusters Formed with Correlation = 0.95

NI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
0.95	ALB1	ALB1	ARAZ	EDG3	BPE2	СРКО	BRK3	CBG0	ATI2	BPE2	BPE2	GIS5	ALB1	MH03	BOB1	MTR3	WDV0	TKU2	нтіз	GYT3	KINO	WPW3	WIL3	TNG5	TNG0	RPO2	RDF3	MGM3	LFD1	ARI1
0.55	ALB3	ALB3	ATIZ	KAWD	BPE3	СРКЗ	CST3	HAMO	EDG3	BPE3	BPE3	TUID	ALB3	MTN3	BOB3	NPK3	WDV1	ткиз	ONG3	MST3	KIN3		with 5	1103	11400	10 01	1015	mania		Alux
																	WDV1	TKU3	UNG3	MS13	KINS									
	BRB3	BRB3	KAW1	KAW1	BPE5	GFD3	HUI3	HAM2	KAWD	BPE5	BPE5	TUI1	BRB3	WGN3	MER3	OKN0														
	DARO	DARO	KM03	KAW2	BRK3	HAYO	HWA1	HAM3	KAW1	LTN3	BRK3	WRAD	TMN5	WVY0	WIR3															
	GLN3	GLN3	MAT1	KMO3	CST3	HAY1	HWA3	HAMS	KAW2	WGN3	MTN3																			
	HEN2	HEN2	MTI2	MAT1	HUI3	HAY3	KPA1	HIN3	KMO3	WVY0																				
	HEN3	HEN3	NAP2	MTM3	KPA1	KWAD	MNIO	KPO1	MAT1																					
	HEP3	HEP3	OHK2	NAP2	LTN3	MLG0	NPL1	KPU6	NAP2																					
	HLYZ	HLY3	OKID	OWHO	MNID	MLG3	NPL2	TMUO	ткно																					
	HLY3	KEN3	OKI2	ROTO	NPL1	PNI3	NPL3	TMU1	WAID																					
	KEN3	KOE3	PPI2	ROT1	NPL2	PRM3	OPK3	WHU3																						
	MDN1	KTA3	RDF2	ROT3	NPL3	TKR3	SFD2	WKO3																						
	MDN2	MDN1	WHID	TGA0	OPK3	UHT3	SFD3																							
	MNG1	MDN2	WHI2	TGA3	SFD2	WWD1																								
	MNG3	MNG1	WKM2	ткно	SFD3																									
	MPE3	MNG3	WPA2	TMI3	TWC2																									
				TRKO	TWCL																									
	MTO3	MPE3	WRK2																											
	OTA1	MT03	WRK3	TRK2																										
	OTA2	OTA1	WTU3	WAI0																										
	PAK3	OTA2																												
	PEN1	PAK3																												
	PEN2	PEN1																												
	PEN3	PEN2																												
	ROS1	PEN3																												
	ROS2	ROS1																												
	SVL3	ROS2																												
	SWN2	SVL3																												
	TAK3	SWN2																												
	TWH3	TAK3																												
	WEL3	WEL3																												
SI																														
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23							
0.95	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22 NSV2	23							
0.95	ADDO	ARG1	CYD2	AVI2	HWB2	BPD1	BAL3	ASB6	DOB3	BPD1	ABYD	CLH0	BPD1	APS0	COB6	COLO	TKAD	18 BWK1	19 HWB3	20 KUM6	21 MOT0	22 N5Y3	23 PAL3							
0.95	ADD0 ADD6	ARG1 ATU1	CYD2 CYD3	AVI2 BEN1	HWB2 INV2	BPD1 BPT1	BAL3 BDE0	ASB6 CML3	DOB3 DOB6	BPD1 OHA2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3																	
0.95	ADD0 ADD6 ASB3	ARG1 ATU1 BLN3	CYD2 CYD3 INV2	AVI2 BEN1 BEN2	HWB2 INV2 INV3	BPD1 BPT1 STU0	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABYD	CLH0	BPD1	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6	ARG1 ATU1	CYD2 CYD3	AVI2 BEN1	HWB2 INV2	BPD1 BPT1	BAL3 BDE0	ASB6 CML3	DOB3 DOB6	BPD1 OHA2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3	ARG1 ATU1 BLN3	CYD2 CYD3 INV2	AVI2 BEN1 BEN2	HWB2 INV2 INV3	BPD1 BPT1 STU0	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6	ARG1 ATU1 BLN3 CUL3	CYD2 CYD3 INV2 INV3	AVI2 BEN1 BEN2 BPD1	HWB2 INV2 INV3 MAN2	BPD1 BPT1 STU0 WTKD	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6 ASY0	ARG1 ATU1 BLN3 CUL3 KIK0	CYD2 CYD3 INV2 INV3 MAN2	AVI2 BEN1 BEN2 BPD1 OHB2	HWB2 INV2 INV3 MAN2 NMA3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADDO ADD6 ASB3 ASB6 ASY0 BRY0 BRY6	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6 ASY0 BRY0 BRY6 HOR3	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1	CYD2 CYD3 INV2 INV3 MAN2 NMA3	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADDO ADD6 ASB3 ASB6 ASY0 BRY0 BRY6 HOR3 HOR6	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADDO ADD6 ASB3 ASB6 ASY0 BRY0 BRY6 HOR3 HOR6 ISL2	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADDO ADD6 ASB3 ASB6 ASY0 BRY0 BRY6 HOR3 HOR6 ISL2 ISL3	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6 ASY0 BRY0 BRY0 BRY6 HOR3 HOR6 ISL2 ISL3 ISL6	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADDO ADD6 ASB3 ASB6 ASY0 BRY0 BRY6 HOR3 HOR6 ISL2 ISL3	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6 ASY0 BRY0 BRY0 BRY6 HOR3 HOR6 ISL2 ISL3 ISL6	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADDO ADD6 ASB3 ASB6 ASY0 BRY0 BRY0 BRY6 HOR3 HOR6 ISL2 ISL3 ISL6 KAI0	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6 ASY0 BRV0 BRV0 BRV6 HOR3 HOR6 ISL2 ISL3 ISL6 KAI0 MLN6 PAP0	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6 ASP0 BRY0 BRY0 BRY6 HOR3 HOR6 ISL2 ISL3 ISL6 KAI0 MLIN6 PAP0 PAP6	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD5 ASB3 ASB6 ASY0 BRY0 BRY0 BRY0 HOR3 HOR5 ISL2 ISL3 ISL6 KAI0 MLN6 PAP0 PAP6 SBK3	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6 AS90 BRV0 BRV6 HOR3 HOR6 HOR3 HOR6 ISL2 ISL6 KA00 MLN6 PAP6 SBK3 SPN3	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 AS83 AS86 AS90 BRV0 BRV6 HOR3 HOR6 ISL2 ISL3 ISL6 KA00 MLN6 PAP0 SBR3 SPN3 SPN6	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6 AS90 BRV0 BRV6 HOR3 HOR6 HOR3 HOR6 ISL2 ISL6 KA00 MLN6 PAP6 SBK3 SPN3	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 AS83 AS86 AS90 BRV0 BRV6 HOR3 HOR6 ISL2 ISL3 ISL6 KA00 MLN6 PAP0 SBR3 SPN3 SPN6	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6 ASY0 BRY0 BRY0 BRY6 HOR5 ISL2 ISL3 ISL6 KAI0 PAP0 PAP0 PAP6 SBK3 SPN3 SPN4 TIM0	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASB6 AS90 BR90 BR90 BR90 BR90 BR90 BR90 BR90 BR	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADDO ADD6 ASB3 ASB6 ASY0 BRY0 BRY0 BRY0 BRY0 BRY0 BRY0 BRY0 BR	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													
0.95	ADD0 ADD6 ASB3 ASP0 BRY0 BRY0 BRY0 BRY0 BRY0 BRY0 ISL2 ISL3 ISL6 KA00 MLN6 PAP0 PAP0 SBR3 SPN6 TIM03 WPR3	ARG1 ATU1 BLN3 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	CYD2 CYD3 INV2 INV3 MAN2 NMA3 ROX2	AVI2 BEN1 BEN2 BPD1 OHB2 OHC2	HWB2 INV2 INV3 MAN2 NMA3 SDN3	BPD1 BPT1 STU0 WTK0 WTK2	BAL3 BDE0 EDN3	ASB6 CML3 FKN3	DOB3 DOB6 GYM6	BPD1 OHA2 TKB2	ABY0 MLN6	CLH0 HOR3	BPD1 OAM3	APS0	COB6	COLO	TKAD													

Within-island Basis Risk

8.6 Clusters Formed with Correlation = 0.99

NI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23						
0.99	ALB1	ALB1	ALB1	ARAZ	GFD3	кмоз	ALB1	CBG0	СРКО	CST3	BPE2	HUI3	KPA1	KAW1	EDG3	TUID	MTI2	HLY2	ATI2	BOB1	KAWO	HLY3	HAM2						
	ALB3	ALB3	ALB3	NAP2	HAYO	MTM3	ALB3	HAMD	СРКЗ	HUI3	BPE3	MNID	MNIO	MAT1	KAW2	TUI1	WKM2	HLY3	кмоз	BOB3	KAW1	KOE3	HAM3						
	BRB3	BRB3	GLN3	OKID	HAY1	OWHO	BRB3	HIN3	KWA0	MNID	BPE5	OPK3	ОРКЗ	ткно	KM03	WRAD	WPA2	TWH3	OHK2	MER3	MAT1	КТАЗ	HAMS						
	DARO	DARO	HEN2	OKIZ	HAY3	ROTO	DARO	KPO1	PNI3	NPL1	LTN3	SFD2	SFD2	WAID	TRK2														
	GLN3	GLN3	HEN3	PP12	MLGO	ROT1	HEN2	KPU6	PRM3	NPL2	TWC2	SFD3	SFD3																
	HEN2	HEN2	HEP3	RDF2	MLG3	ROT3	HEN3	TMU0	TKR3	NPL3																			
	HEN3	HEN3	HLY3	WHIO	PNI3	TGA0	HEP3	TMU1	WWD1																				
	HEP3	HEP3	MNG1	WHI2	PRM3	TGA3	HLY3	WHU3																					
	HLY3	HLY3	MNG3	WRK2	TKR3	TMI3	KEN3	WK03																					
	KEN3	KEN3	OTA1	WRK3	UHT3	TRKO	KOE3																						
	MDN1	MDN1	OTA2	WTU3																									
	MDN2	MDN2	PAK3																										
	MNG1	MNG1	PEN1																										
	MNG3	MNG3	PEN2																										
	MPE3	MPE3	PEN3		24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
	MTO3	MT03	SVL3		MTN3	WDV0	TKU2	MTR3	NPK3	MHO3	KIND	HWA1	WVY0	WPW3	WIR3	WIL3	TNG5	TNG0	TMN5	RPO2	RDF3	ONG3	MST3	MGM3	LFD1	нтіз	HAY2	GYT3	GIS5
	OTA1	OTA1	SWN2		WGN3	WDV1	TKU3	OKN0	OKN0	MTN3	KIN3	HWA3																	
	OTA2	OTA2	TAK3																										
	PEN2	PEN1																											
	PEN3	PEN2																											
	ROS1	PEN3																											
	ROS2	SVL3																											
	SVL3	SWN2																											
	SWN2	TAK3																											
	TAK3	TAK3																											
		TAK3																											
51	TAK3	TAK3 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23						
SI 0.99	TAK3 WEL3		3 BPD1	4 ASB3	5 BEN1	6 BDE0	7 CYD2	8 INV2	9 OHA2	10 CML3	11 COL0	12 DOB3	13 HOR3	14 HWB2	15 MAN2	16 BPD1	17 BPD1	18 TKAD	19 АВУО	20 AP50	21 ATU1	22 AVI2	23 BAL3						
	TAK3 WEL3	2																											
	TAK3 WEL3 1 ADD0	2 ARG1	BPD1	ASB3	BEN1	BDE0	CYD2	INV2	OHA2	CML3	COLO	DOB3	HOR3	HWB2	MAN2	BPD1	BPD1	TKAD											
	TAK3 WEL3 1 ADD0 ADD6	2 ARG1 CUL3	BPD1 BPT1	ASB3 ASB6	BEN1 BEN2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3	COLO	DOB3	HOR3	HWB2	MAN2	BPD1	BPD1	TKAD											
	TAK3 WEL3 1 ADD0 ADD6 ASY0	2 ARG1 CUL3 KIKO	BPD1 BPT1 WTKD	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3	COLO	DOB3	HOR3	HWB2	MAN2	BPD1	BPD1	TKAD											
	TAK3 WEL3 1 ADD0 ADD6 ASY0 BRY0	2 ARG1 CUL3 KIKO KKA3	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3	COLO	DOB3	HOR3	HWB2	MAN2	BPD1	BPD1	TKAD											
	TAK3 WEL3 1 ADD0 ADD6 ASY0 BRY0 BRY6	2 ARG1 CUL3 KIKO KKA3 MCHO	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3	COLO	DOB3	HOR3	HWB2	MAN2	BPD1	BPD1	TKAD											
	TAK3 WEL3 1 ADD0 ADD6 ASY0 BRY0 BRY0 BRY6 ISL2	2 ARG1 CUL3 KIK0 KKA3 MCH0 ORO1	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3	COLO COL6 25	DOB3 DOB6 26	HOR3 HOR6 27	HWB2 SDN3 28	MAN2	BPD1 OAM3 30	BPD1 STUD 31	TKAD TKA3 32	ABYO 33	AP50 34	ATU1 35	AVI2 36	BAL3 37						
	TAK3 WEL3 1 ADD0 ADD6 ASY0 BRY0 BRY6 ISL2 ISL3	2 ARG1 CUL3 KKA3 MCH0 ORO1 RFN1	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3 FKN3	CDL0 CDL6	DOB3 DOB6	HOR3 HOR6	HWB2 SDN3	MAN2 NMA3	BPD1 OAM3	BPD1 STU0	TKAD TKA3	ABYO	APSO	ATU1	AVI2	BAL3						
	TAK3 WEL3 1 ADDO ADD6 ASYO BRYO BRYO BRYO ISL2 ISL3 ISL6 KAIO MLN6	2 ARG1 CUL3 KK0 KKA3 MCH0 ORO1 RFN1 STK2	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3 FKN3 24	COLO COL6 25	DOB3 DOB6 26	HOR3 HOR6 27	HWB2 SDN3 28	MAN2 NMA3 29	BPD1 OAM3 30	BPD1 STUD 31	ткар тказ 32	ABYO 33	AP50 34	ATU1 35	AVI2 36	BAL3 37						
	TAK3 WEL3 1 ADD06 ASY0 BRY0 BRY6 ISL2 ISL3 ISL6 KAI0 MLN6 PAP0	2 ARG1 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3 FKN3 24	COLO COL6 25	DOB3 DOB6 26	HOR3 HOR6 27	HWB2 SDN3 28	MAN2 NMA3 29	BPD1 OAM3 30	BPD1 STUD 31	ткар тказ 32	ABYO 33	AP50 34	ATU1 35	AVI2 36	BAL3 37						
	TAK3 WEL3 ADD0 ADD0 ASY0 BRY0 BRY0 BRY6 ISL2 ISL3 ISL6 KAI0 MLN6 PAP0 PAP6	2 ARG1 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3 FKN3 24	COLO COL6 25	DOB3 DOB6 26	HOR3 HOR6 27	HWB2 SDN3 28	MAN2 NMA3 29	BPD1 OAM3 30	BPD1 STUD 31	ткар тказ 32	ABYO 33	AP50 34	ATU1 35	AVI2 36	BAL3 37						
	TAK3 WEL3 ADDO ADD6 ASY0 BRY0 BRY0 BRY6 ISL2 ISL3 ISL6 KAI0 MLIA6 PAP0 PAP6 SBK3	2 ARG1 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3 FKN3 24	COLO COL6 25	DOB3 DOB6 26	HOR3 HOR6 27	HWB2 SDN3 28	MAN2 NMA3 29	BPD1 OAM3 30	BPD1 STUD 31	ткар тказ 32	ABYO 33	AP50 34	ATU1 35	AVI2 36	BAL3 37						
	TAK3 WEL3 ADD0 ADD6 ASY0 BRY6 BRY6 BRY6 ISL2 ISL3 ISL6 KAI0 MLN6 PAP6 SBK3 SPN3	2 ARG1 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3 FKN3 24	COLO COL6 25	DOB3 DOB6 26	HOR3 HOR6 27	HWB2 SDN3 28	MAN2 NMA3 29	BPD1 OAM3 30	BPD1 STUD 31	ткар тказ 32	ABYO 33	AP50 34	ATU1 35	AVI2 36	BAL3 37						
	TAK3 WEL3 ADD0 ADD6 ASY0 BRY0 BRY0 BRY6 ISL2 ISL3 ISL6 KA40 MLN6 PAP0 PAP6 SBR3 SPN3 SPN6	2 ARG1 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3 FKN3 24	COLO COL6 25	DOB3 DOB6 26	HOR3 HOR6 27	HWB2 SDN3 28	MAN2 NMA3 29	BPD1 OAM3 30	BPD1 STUD 31	ткар тказ 32	ABYO 33	AP50 34	ATU1 35	AVI2 36	BAL3 37						
	TAK3 WEL3 ADD0 ADD6 ASY0 BRY6 BRY6 BRY6 ISL2 ISL3 ISL6 KAI0 MLN6 PAP6 SBK3 SPN3	2 ARG1 CUL3 KIK0 KKA3 MCH0 ORO1 RFN1 STK2 STK3	BPD1 BPT1 WTKD WTK2	ASB3 ASB6 TIM0	BEN1 BEN2 OHB2	BDE0 EDN3	CYD2 CYD3	INV2 INV3	OHA2 TKB2	CML3 FKN3 24	COLO COL6 25	DOB3 DOB6 26	HOR3 HOR6 27	HWB2 SDN3 28	MAN2 NMA3 29	BPD1 OAM3 30	BPD1 STUD 31	ткар тказ 32	ABYO 33	AP50 34	ATU1 35	AVI2 36	BAL3 37						